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1. INTRODUCTION

The on-going effort whose various facets have been described

e.g. in [Blaha, 1975, 1977, 1979, 1980, 1981] is concerned with the adjust-

ment of satellite altimeter data in two steps, the first performed in terms

of a truncated set of spherical-harmonic (S.H.) potential coefficients and

the second performed in terms of point-mass (P.M.) magnitudes as parameters.

The emphasis has been shifted recently toward SEASAT altimeter data as the

main source of observed quantities in the first adjustment; gravity anoma-

lies and other sources of geopotential information have been included via

the weighted S.H. coefficients. At this stage (first adjustment), six

weighted state vector (s.v.) parameters per orbital arc are also included

in the simultaneous least-squares process. The first adjustment is global

in character. One of its most important products is a revised set of S.H.

coefficients which may be of interest in itself, and which is especially

useful in predicting geoid undulations, gravity anomalies and other quanti-

ties related to the disturbing potential (such as deflections of the vertical

or gravity gradients) on the global scale.

The data for the second adjustment consist mainly of the residuals

from the first adjustment, although other quantities (gravity anomalies,

deflections of the vertical, etc.) can enter this phase independently. In

this process a more detailed, but regional, geoid is derived. Predictions

of the other quantities just mentioned can also be made in the region of

interest. A given set of point masses has a chosen distribution which, as

a rule, is uniform and is characterized by the 1.6:1 depth-side ratio.
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Denser sets of point masses could be superimposed on the basic set, leading

to an even more detailed description of the gravity field in specific sub-

regions. This can be related to the mean values of geoid undulations

derived, for blocks of a certain size, from satellite altimetry. In some

areas of pronounced and varied geoidal relief, such as in the Puerto Rico

trench area, the differences between the mean and the actual undulations

could become large and, thus, smaller blocks might be chosen to describe

the geoid. From geoid undulations (or their means) one could derive other

quantities related to the disturbing potential, upon using the appropriate

cross-covariance functions. The present approach with point masses cir-

cumvents, by construction, the need for these functions.

One final product obtained with the P.M. adjustment superimposed

on the S.H. adjustment is a set of contour maps based on predicted values

for geoid undulations, gravity anomalies, etc. A typical example is a

geoidal map in a region containing point masses. This region exhibits detail-

ed geoidal features, while far from it the geoid described by the potential

coefficients alone is very smooth; the transition from one region to the

other is gradual.

Since the global S.H. adjustment is the basis for any detailed

geoidal resolution, it has been refined on several occasions, both from the

accuracy and the economy standpoints. For example, criteria have been es-

tablished specifying the maximum and the minimum allowable length of satel-

lite arcs. In terms of SEASAT altimetry these criteria translate into seven

minutes and about one minute in duration, respectively, as described in

Chapter 2 of [Blaha, 1981]. The same report contains also the development
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resulting in a substantial improvement in the economy of the short-arc

algorithm, achieved through a reduction in the number of S.H. potential

coefficients entering the orbital integrator. The corresponding reduction

in the run-time requirements does not compromise the quality of the alti-

metric information. Indeed, the information represented by the SEASAT

altimeter data, the NSWC precise ephemeris, the GEM 10 S.H. potential coef-

ficients (at least within the 16,16 truncated set), as well as the reference

field parameters has been found to be of excellent quality. The pertinent

analysis is presented in Appendix 1 which draws a tentative conclusion with

regard to the closed-form expression giving the degree variances for geoid

undulations.

Due to the high quality of the SEASAT altimetric system compared

to its predecessors (e.g., the GEOS-3 system including the broadcast ephemeris),

modeling errors caused by certain sea level changes can no longer be ignored.

The most important changes are those caused by the tide-generating forces of

the moon and the sun. Of these, eleven long-period, diurnal and semidiurnal

tidal effects are discussed in the body of this report, starting with the

equilibrium tide. The initial development overlaps, to a certain extent,

with Sections 3.1 and 3.2 of [Blaha, 1981] where, however, fewer tidal con-

stituents were treated.

In addition to this Final Report, the reports covering the entire

period of the present research contract have been [Blaha 1979, 1980, 1981].
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2. EQUILIBRIUM TIDE

When determining the height of the theoretical, or equilibrium,

tide, its individual component "h" is associated with the tidal con-

stituent "j" of amplitude A. and argument aj. The total height is then

the sum of the individual h.'s. The basic formulas adopted in this de-

velopment are (129) - (131) of [USCGS,1958] abbreviated here as [US].

Since only the average values of the h.'s with regard to the longitude

of the moon's mode are sought at a first stage, the "node factor", f, is

taken as unity in the pertinent formulas. This implies, for example, that

the "permanent tide" symbolized by A is considered through its mean effect

over one full revolution (or several full revolutions) of the moon's node;

such a revolution is completed in about 18.6 years.

In considering the average (in the above sense) combined effect

of the moon and the sun, the constituent height can be expressed by

h. = A. cos a. (2.1)

The amplitude varies with @, the geocentric latitude, as

A. K. Gj( ) C. ; (2.2)

here f=1 is assumed so that the coefficient C. represents the mean value

of a Dertinent function with respect to the longitude of the moon's node.

In the following, three irdices (a, b, c) will be used:

a... long-period constituents,
b... diurnal constituents,
c... semidiurnal constituents.
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The meaning of the symbols Kj and G.(4) is thus narrowed down to

Ka = Ga 0.13334m, (2.3a)

Kb = Kc = Ga 0.2667m, (2.3b)

where

G = (3/4)(M/E)(a/r') , (2.3c)

with M and E being the moon's and the earth's masses, respectively, a being

the mean radius of the earth (6,371 km) and rM being the mean earth-moon

distance; according to the values listed in Table I of [US], G 0.41865 x10 .

Further,

G a() = (1-3 sin 2 ) , (2.4a)

Gb( ) = sin 24 , (2.4b)

G c() = cos 24 . (2.4c)

In [Blaha, 1981], Table 1 was constructed featuring the constitu-

ent heights expressed according to (2.1) - (2.4c). Its "extreme magnitude"

column features the largest values of h. which can be reached as follows:

a ...4: ±90 ,

b ... 4= ±45o,

c ...4 : 0

In each group (a, b, or c) the constituents are listed in the descending

order of magnitude. This table is reproduced here for the sake of complete-

ness.
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C h EXTREME
KIND SYMBOL DESCRIPTION hi MAGNITUDE

A 0 constant .7384 .0985m (1-3 sin24) .197m

a Mf semimonthly .1566 .0209m (1-3 sin 20)coscaMf .042m

Mm monthly .0827 .0110m (1-3 sin 2p)COSc .022m
Mm

SSa semiannual .0728 .0097m (1-3 sin 2 0)coscL t .019M

K1  declinational .5305 .1415m sin2 cosctK .141m
luni-solar 1

b 01 principal lunar .3771 .1006m sin24 cosa0  .101im

P1  principal solar .1755 .0468m sin2o cosap1  .047m

M2 principal lunar .9085 .2423m cos2q coSaXM .242m

c 2 principal solar .4227 .1127m cos24 cosct5  .113m
N 2  ecliptical lunar .1759 .0469m cos24 cosctN2  .047m

K 2  declinational .1151 .0307m cos 2 o Cosa K2 .031m
1 uni-solar2

Table 1

Approximate heights of selected tidal constituents,
including extreme magnitudes

-6-



2.1 Long-Period Constituents

If only the average effects were of interest, the constituent

heights h. in the group "a" of Table 1 could be compared with the formulas

of[Lisitzin, 1974], pages 49 and 38, 39, respectively, implying for the

tidal potential of the long-period terms:

WA = 0.96621 (1-3 sin 2 ) m2/sec 2 ,
0

WMf 0.20460 (1-3 sin 2l) cos 2s m2/sec 2,

WMm = 0.10796 (1-3 sin 2
l) cos(s-p) m2/sec 2,

WSSa 0.09531 (1-3 sin 2 ) cos 2h m2/sec2 ,

where

h = mean longitude of the sun,

s = mean longitude of the moon,

p = longitude of the lunar perigee.

It follows for the constituent heights:

WAo/ g = 0.0986m (1-3 sin 2l)

WMf/ 9- 0.0209m (1-3 sinlp) cos 2s

SMm/ g- 0.0110m (1-3 sin 2?) cos(s-p)

WSSa/g = 0.0097m (1-3 sin 2 ) cos 2h

where g, the average terrestrial gravity, is adopted as 9.80 m/sec 2. Except

for the less explicit notations for the arguments "a" in Table 1, the agree-

ment is nearly perfect.
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If a more accurate representation is sought, the influence of

the moon and the sun must be treated separately. For this purpose, the

node factor for the moon, denoted in general as f., can no longer be assumed

to be unity (it is always unity for the sun). When applied separately for

the moon and the sun, (2.2) becomes

A. K. Gj( ) C. f. ... moon , (2.5a)

A K. G.(€) C' ... sun (2.5b)

The node factor (a function of the longitude of the moon's node with the

periodicity of about 18.6 years) changes very slowly from year to year for

each constituent. Table 14 of [US] gives the value of the pertinent f.

for the middle of each year between 1850 and 1999.

If a given constituent represents the moon's action alone, (2.1)

is adopted without change in notations and A. is computed according to

(2.5a). For a strictly solar constituent, A. and o. in (2.1) are replaced

by A. and cv,, with A'. computed as in (2.5b). If a constituent is composed

of both effects, the resulting h. is obtained as

(2.6)

h. = A. cosa. + A ccsa i = KjG (W)(C f. cosj + C cosa i ).J J •

For the permanent tide, the value which corresponds to the active

life-span of SEASAT can be associated with mid-year 1978 and is given as

f = fm = 1.131 (2.7)
-0-



Since mj and c] are immaterial for the permanent tide, with the aid of

(2.3a) and (2.4a) equation (2.6) becomes

hAo = 0.13335m (1-3 sin 2
0)(CAo fAo + C o0 (2.8)

Table 2 of [US] gives

CA = 0.5044, C' = 0.2340o Ao

which, when added algebraically, yield the value 0.7384 seen in Table 1

for an average effect. However, in considering the specific case of

SEASAT altimetry and the corresponding value fA in (2.7), equation (2.8)

yields the explicit form for the equilibrium height of the constituent Ao:

hA = 0.1073m (1-3 sin 2€) . (2.9)
A0

The constituents Mf and Mm are due exclusively to the moon. In

agreement with [US] the tidal arguments are written as

aMf : a'f 2E,

O'Mm = m ;

Table 6 or Table 11 of [US] give for the SEASAT observational epoch:

-2E = -1.071

The coefficients "C" and the node factors "f" for this epoch are

CMf = 0.1566 , fMf = 0.625

CMm : 0.0827 , fMm = 1.131
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According to (2.1) and (2.5a), the equilibrium formulas representing the

SEASAT epoch thus read

hMf = 0.0131m (1-3 sin 2€) cos (ct1f - 1.070) , (2.10)

hMM = 0.0125m (1-3 sin 2€) cosam, (2.11)

The constituent SSa owes its existence to the sun only, hence (2.1)

and (2.5b) apply. According to [us], one can write

aSSa - 'SSa

CSSa = 0.0728

yielding, regardless of the SEASAT epoch,

hSSa = 0.0097m (1-3 sin 2q) cosatSa , (2.12)

which is essentially (except for the argument notation) the same as the cor-

responding expression in Table 1.
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2.2 Diurnal Constituents

When considering the constituent K1 , one realizes that the value

hK is made up of the moon's and the sun's contribution, hence it is of the

form (2.6). Due to the changing longitude (N) of the moon's node, a differs
K
1

from ak by a small quantity -v, namely
K1

aKI a K- v. (2.13)

Similar to the node factor, the periodicity of v is approximately

18.6 years. Over short periods (e.g. less than a year) it can be considered

constant. Table 6 of [us] gives the values of v according to N. For the

beginning of September 1978, the epoch which is quite representative of the

SEASAT data series, the value of N found from Table 4 of [uS] is

N = 1780 , (2.14)

implying that

v = 0.57u (2.15)

The value in (2.14) is considered constant for all SEASAT observations.

In order to obtain hK from (2.6) in the form similar to (2.1) in
1

conjunction with (2.5a), one has to simplify the following expression:

CKI CK fK cos(ak -v) + Ck cosak , (2.16a)

1 1 1

which corresponds to the quantity inside the parentheses in (2.6) with K1

substituted for j and with (2.13) taken into account. Equation (2.16a) can

-11-
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be developed into

CK (CKfKI cos +K Cf sin f sinl (2.16b)
1 11K 1 1 K K 1

which is of the form

C = C1 cosa + C2 sina = (C2 +C ) [(C1 cosa + C2 sina)/(C +C ) ]

If v' is defined as arc tg (C2/CI), one has

sinv' = C2/(C+C) cosv C (C+C)

and hence

c (C+ CI) cos (a .V

When applied to (2.16b) this yields

cK (CK fKI) cos&K , (2.17a)
1 K1K1 1K'

where

C (C2 +C) (2.17b)
K 1 K1  1 2

C1  = CK fK cosV + C1 , C2 = CK fK sinv , (2.17c)

a = aK1 -' , ' = arc tg (C2/C1) . (2.17d)

The coefficient CK represents a certain mean value defined as

CK = mean [ (C2 + C2) cosV'] mean C1  (2.18a)
1-12-
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which in Table 2 of [US] is listed to be

CK = 0.5305 . (2.18b)

1

Further listed are the values

CK = 0.3623 , C = 0.1681

The node factor for K1 is identical to that for J of equation (76) of

[US], and it is listed for mid-1978 as

fK1  fJ1 0.827.

With these values for C , f and with v from (2.15), one calculates
K1 1e v s1

(see 2.17 c,d):

C1 = 0.4677, C2  0.002981, v' = 0.37

from here it follows (see 2.17 b,d) that

CKlfK1 = 0.4677 , cK = K - 0.37'. (2.19)

The values in (2.19) could also be obtained more directly from

$ Table 14, and Table 6 or Table 11 of (us], respectively. In particular,

0.4677 could be found upon multiplying 0.5305 in (2.18b) by the corresnonding

node factor 1K listed for mid-1978 in Table 14 (under the heading K1) as

0.882; and 0.370 could be found, for N= 1780, from Table 6 (under the heading

v') or from Table 11 (under the heading K1). In either case the equilibrium

formula (2.6), applied to K1 in conjunction with (2.3b), (2.4b), (2.17a) and

(2.19), becomes

h = 0.1248m sin24 cos(i- 0.37') , (2.20)

-13-



referring to the epoch of SEASAT altimeter data acquisition. The variable

part of the argument for this and other tidal constituents, a, will be

described later.

The effect of 01 is due exclusively to the moon, hence (2.1)

and (2.5a) apply. In analogy to (2.13) and the development that followed,

a will be written as a' (this, in itself, is immaterial here) plus some
01 1

small quantity which will again be considered constant due to the short

active life-span of SEASAT. In particular,

= a6 + (2 . (2.21)

For N given in (2.14), Table 4 of [US] yields approximately 0.540 for C

and 0.570 for v (see equation 2.15 above); Table 11 of the same reference

yields directly 2C- v under the heading 01. In either case the result is

2E -v = 0.50 o. (2.22)

The coefficient "C" and the node factor for mid-1978 are

C0 = 0.3771, f0  : 0.806. (2.23)

Upon inserting the results (2.3b), (2.4b) and (2.21)- (2.23) into (2.1) and

(2.5a), one has the equilibrium formula for 01 representing the SEASAT obser-

vational epoch:

h0  = 0.0811m sin2€ cos(oI + 0.500) (2.24)
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The constituent P1 is due to the sun's effect. From (us] we

extract

CP = 0.1755

yielding

h = 0.0468m sin2 cos4l (2.25)

This expression is independent of the SEASAT epoch and is essentially identi-

cal to the corresponding expression in Table 1.

-15-
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2.3 Semidiurnal Constituents

The most important of all the tidal constituents, M 2 , is due

exclusively to the moon. It can be developed in a complete analogy to the

approach followed for 01. The argument is written as

.IM = M2 + (2 -2v) , (2.26)

where and v were already found; thus

2- 2v = -0 .07o (2.27)

which is also the value given in Table 11 of [US] under the heading M2.

Further, one has

CM2 = 0.9085 , fM2 = 1.038 , (2.28)

and

hM = 0.2515m cos24 cos(N2 - 0.070) (2.29)

which is the equilibrium formula for M2 corresponding to the SEASAT obser-

vational epoch. It has been obtained from (2.26)- (2.28) in the same way as

(2.24) was obtained from (2.21)- (2.23) except, of course, that (2.4b) has

been replaced by (2.4c).

The constituent S2 owes its existence to the sun. The argument

is thus written as a' in agreement with the original convention, and the

node factor is omitted. In other respects the equilibrium formula for S2

is derived similar to (2.29) above, namely

hS2 = 0.1127m cos20 cosa 2 (2.30)
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In this case, no special considerations related to the SEASAT observational

epoch are necessary.

The constituent N2 is due solely to the moon; one has

aN = 2 + (2 2v),
aN2  2

where, according to (2.27),

2E - 2v = -0.07'

Furthermore, one finds

CN = 0.1759, fN = 1.038
2 N2

hence

hN = 0.0487m cos2¢ cos(o2 - 0.070) , (2.31)

which is the equilibrium formula for N2 corresponding to the SEASAT epoch.

The constituent K2 reflects the effect of both the moon and the

sun, hence (2.6) applies, where

a K2  k2 - 2v

Accordingly,

h K = Ga cos 2  K 2

where Ga was given in (2.3b) and where

cK = CKfK cos(ak -2v) + C2 cos aK

2 2 2 2 2 2

-17-



in analogy to (2.16a). The numerical values are

2\) = 1.140

CK 0.0786, f = 0.630;
2 K2

Ck = 0.0365K2

From this point on, the algorithm contained in the formulas (2-16a)-(2.19)

can be adopted in its entirety, except for the following changes in notations:

K1  - K2  v 2v , V' 2V"

The results are

cK =(CK fK) Cosa K2 2  2 2

CK2fK2 = 0.08602 ,

( = cK - 2v",
K2  2

2v" = 0.66'

Thus

hK2 = 0.0230m cos2' cos(k 2 0.660) (2.32)

This outcome could also be obtained from Tables 2, 14, and 6 or 11 of [US].

In particular, Table 2 lists CK2 (see Note 4 on page 166) as 0.1151. The

corresponding node factor fK is 0.748 appearing, for the mid-1978, in Table

14; this yields the product 0.08609 which is in a good agreement with the

above computed value. Table 6 gives 2v" for N = 1780 (see equation 2.14) as

0.66U; equivalently, Table 11 shows this value under the heading K2.

-18-



2.4 Tidal Arguments

The explicit expressions for the equilibrium tidal arguments

are developed in a way similar to Table 2 of [US] with a few minor changes.

One change pertains to the constant part "u" which is presently expressed

numerically (in 0) and represents the SEASAT observational epoch. With

regard to the computation of a!, the variable part of the argument (in

Table 2 of [US] denoted as V), UT ±12 hours is used instead of T, the hour

angle of the mean sun at Greenwich at the time of the tidal evaluation.

Since all the quantities will be considered as given in degrees instead of

hours, the following applies:

T = UT ±1800 , (2.33)

where UT (in 0 is obtained by multiplying UT (in hours) by 15 (0/hour),

etc. The other two variables needed for the evaluation of a' at Greenwich

for the desired constituents are h, the mean longitude of the sun, s, the

mean longitude of the moon and p, the longitude of the lunar perigee. In

terms of local -- rather than Greenwich -- arguments, UT is replaced by

UT+X, where X (in 0) is the customary east longitude of the point where the

tidal evaluation is sought, symbolized by

local argument ... UT - UT + X . (2.34)

In order to indicate the computation of the equilibrium tidal arguments at

Greenwich, Table 2 lists these arguments in two parts (see its second column),

atj and uj; the final argument is

a. = + uj (2.35)
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CONSTI- GREENWICH ARGUMENT SPEED

TUENT - +uj a/day - 0hour-" Jan 0. 5, 1900 PERIOD

Mf 2s -1.070 26.352793539 1.09803306 180.8748440 13.6608 d

Mm s- p +0.00 13.064992739 0.54437470 296.1094030 27.5546 d

SSa 2h +0.00 1.971294671 0.08213728 199.3933560 182.6211 d

K1  UT+ h +900  -0.370 360.985647335 15.04106864 189.6966780 23.9345 hr

01 UT-2s+h-900 +0.500 334.632853797 13.94303557 188.8218330 25.F193 hr

P UT - h - 900 +0.00 359.014352665 14.95893136 170.3033220 24.0659 hr
1

M 2UT- 2s+ 2h -0.07u 695.618501132 28.98410421 18.5185110 12.4206 hr

S2  2UT +0.00 720. 30. 0. 12 hr

N2  2UT- 3s + 2h + p -0.070 682.553508393 28.43972952 82.4091080 12.6583 hr

K2  2UT+ 2h -0.660 721.971294671 30.08213728 199.393356u 11.9672 hr

Table 2

Greenwich arguments and related quantities
for selected equilibrium tidal constituents

The x'. part agrees with [Schwiderski, 1980], page 172, and with [Lisitzin,
3

1974], page 12.

For the explicit computation of cx', the expressions for h, s and p

are adapted from [US], page 162, as
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h = 279.6966780 + 36,000.7689250T + 0.000303'T2 , (2.36a)

s = 270.4374220 + 481,267.8920000 T + 0.002525'T2 + 0.000002T3 , (2.36b)

p = 334.3280190 + 4,069.032206'T - 0.010344'T2 - 0.0000121T 3 , (2.36c)

where T is the number of Julian centuries (of 36,525 days) reckoned from

January 0.5, 1900 at Greenwich, i.e., from December 31, 1899, 12h UT. For

January 0.0, 1978 at Greenwich, the value of T is 28,488.5/36,525; upon

considering (2.36 a-c) one has

[h] = 279.3109760, [s] = 166.2183220, [p] = 268.0554370, (2.37)

where the brackets have been used to indicate this specific time epoch. Near

a point of expansion, i.e., certainly within a year, h, s and p can be con-

sidered as linear functions of time and their speeds in '/day, etc., can be

evaluated using the terms linear in T in (2.36 a-c). When considered together

with (2.37), these speeds make it possible to compute h, s and p for any

instant in 1978 accurately as

h = 279.3109760+  0.9856473350D + 0.041068641- hr
+ 0.000684480 min + 0.000011410, sec , (2.38a)

s = 166.2183220+ 13.1763967690-D + 0.54901653'- hr
+ 0.009150280. min + 0.00015250'- sec , (2.38b)

p = 268.0554370+ 0.1114040300• D + 0.004641830. hr

+ 0.000077360. min + 0.000001290. sec , (2.38c)

where 0 = day number in 1978, and hr, min, sec represent hours, minutes,

seconds in UT for that day. From the formulas (2.38 a-c) the various rates

of change in h, s and p are apparent. They also confirm the periodicity of

h (365.2421988 days = tropical year), of s (27.32158164 days = tropical month)

and of p (8.847313 years of 365.25 days).
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The numerical values of ca at Greenwich for any instant in 1978

can be found from the general expression appearing in the second column of

Table 2. The rate of change in UT, taken in the interval 0-24 hours, is

150 /hr, 0.2501/mi and 0.004166670/sec, while the initial values and the

rates of change in the other three variables, h, s and p, have been given

in (2.38 a-c). The required combinations of UT, h, s and p thus yield

Mf=332.4366450 + 26.3527935390.- D + 1.098033060'-hr
+ 0.01830050- min + 0.000305010-sec , (2.39a)

ot = 258.1628860 + 13.0649927390k, D + 0.544374700-hr

+ 0.009072910 min + 0.000151220=sec , (2.39b)

aS Sa= 198.6219520 + 1.9712946710. 0 + 0.082137280ahr

+ 0.001368950 Ptmin + 0.000022820-sec ; (2.39c)

= 9.3109760 + 0.9856473350- D + 15.041068640-hr
1+ 0.250684480 -min + 0.004178070-sec , (2.40a)

ct6 = 216.8743310 - 25.3671462030x D + 13.943035570xhr
1 + 0.232383930 - min + 0.003873070 ksec , (2.40b)

=350.6890240 - 0.9856473350- D + 14.958931360k hr
1+ 0.249315520 x min + 0.004155260xsec ; (2.40c)

=226.1853070 - 24.3814988680. 0 + 28.984104210nhr
2+ 0.483068400 min + 0.008051140asec (2.41a)

OL 30.Ox hr + 0.50 x min + 0.008333330 , sec ,(2.41b)
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= 328.0224210 - 37.4464916070 x D + 28.439729520 a hr
+ 0.473995490 x min + 0.007899920 , sec , (2.41c)

'" = 198.6219520 + 1.9712946710 x D + 30.082137280 x hrK+ 0.501368950 x min + 0.008356150 x sec , (2.41d)

where D, hr, min, sec were defined following (2.38 a-c). From these formulas

* the rates of change in the arguments a'. and thus also a are apparent and
agree with Table 2 of [US] wherever they are comparable (i.e., they agree

with the values printed in [us] as "speed per solar hour" which, however,

exhibit fewer significant digits than the speeds derived above). Further-

more, these rates also agree with [Estes, 1980], page 118, and with [Godin,

1972], page 232; they agree approximately with [Schwiderski, 1980], page 172,

[Estes, 1980], page 101, and [Lisitzin, 1974], page 12. The rates associated

with "D" and "hr" are further presented in Table 2, columns 3 and 4, respective-

ly, under the headings 0/day and 0/hour.

The fifth column of Table 2 lists a' at Greenwich for January 0.5,

1900 obtained, with the aid of the second column, from (2.36 a-c) for T=O.

One could evaluate aj at any instant also from these values upon applying the

rates listed in the columns 3 and 4. However, this would lead to a slight

loss of accuracy even if sufficient digits are used in the arithmetic, due to

neglecting the terms in T2 (and T3 ) inherent in the formulas for h, s and p

in (2.36 a-c). By comparison, the terms in T2 and T3 did enter (2.38 a-c)

and thus also the expressions that followed, developed herein in view of SEASAT

altimetry. The latter formulas are advantageous to use not only for their

accuracy, but also because they are very simple and do not necessitate a

large number of significant digits for their evaluation.
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Having found all of the (x', one can recapitulate, with the aid

of Table 2, Greenwich and local arguments corresponding to SEASAT observa-

tional epoch. For the long-period tides there is no distinction between

these two kinds and we have

A = (2.42a)
A0

M =Mf Z c f -1.07o' (2.42b)

:Mm ' cxm (2.42c)

LSSa a (2.42d)
S~ 'Sa

Greenwich arguments for the diurnal constituents similarly are

aK - 0.370 , (2.43a)

C& 0 a' + 0.500 , (2.43b)01 01'

aP1 (2.43c)

while Greenwich arguments for the semidiurnal constituents are

OL M = oa 0 .0 7o (2.44a)

a = e' , (2.44b)S2  S2

a N2  = A2 - 0" 7  (2.44c)

a = a' - 0 .66 0 (2.44d)
K2  K2

The above three groups of formulas appeared, in a similar form, in Sections

2.1, 2.2 and 2.3, respectively.
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The local arguments (for the diurnal and semidiurnal constituents)

then read
! ~I

K1  K1 + X- 0.37 0 , (2.45a)

. + X + 0.50o , (2.45b)0O1 01

ap = a1 + x; (2.45c)

a M2  = o2 + 2- 0.07' , (2.45d)

as = c + 2X, (2.45e)

2  2

2= a;N2 + 2X - 0.07' , (2.45f)

+ a'2 2x- 0.660  (2.45g)
2 

2
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3. TIDAL MATHEMATICAL MODEL

3.1 Simplified Tidal Model

This model encompasses the equilibrium tide in conjunction with

the solid earth deformation as described on pages 31 and 32 of [Blaha, 1981].

In that report, abbreviated here as [B], the water level was assumed to

conform instantaneously to the total tidal potential r. This potential, in

turn, was assumed to be

= (1+k)F , (3.1)

where r is the equilibrium, or astronomical, tidal potential (due to the

effect of the moon and the sun) and k is one of the Love numbers; k is then

the "additional tidal potential" owing its existence to the earth deformation.

Equation (3.1) was not written explicitly per se, but it was implied in the

form of the "geocentric tide" listed below.

The simplifications present in the model of [B] discarded the

forces of friction and viscosity as well as various other effects; of these,

the self-gravitation and the ocean loadinq effects will be discussed in the

first part of the next section. The heights of the various tidal phenomena

as described in [B] are now briefly recapitulated:

equilibrium tide : P/g , (3.2)

earth deformation : hr/g , (3.3)

additional tide (due to the earth deformation) = kr/g ; (3.4)
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"geocentric tide" = (1+k)r/g , (3.5)

"measured tide" = (1+k-h)r/g ; (3.6)

"geocentric tide" = [(1+k)/(1+k-h)] "measured tide" (3.7)

The symbol g in these formulas represents the average value of gravity.

Equation (3.7) is the consequence of (3.5) and (3.6). In [B], the values

of the Love numbers h, k were adopted from [Van( ek, 1980], pages 10 and 11,

as

h 0.62 , k 0.29 . (3.8)
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3.2 Realistic Tidal Model

In this model, the above mentioned forces of friction and viscosity

as well as the self-gravitation and the ocean loading effects will be ac-

counted for in the Laplace Tidal Equations which include also the Coriolis

force and the spatial distribution of depth. The development will begin with

the self-gravitation to which the ocean loading effects (the effect on the

ocean bottom, the effect on the potential) will be related subsequently. The

Laplace Tidal Equations (LTE) will be recapitulated using a fair amount of

detail, which will shed light on various possible simplifications and, especial-

ly, on the surface tide directly related to altimeter observations. Finally,

a model expressing the surface tide for the diurnal and semidiurnal tidal

constituents of interest will be derived. The following four references will

be mentioned on numerous occasions: [Vaniek, 1980], [Estes, 1980], [Parke

and Hendershott, 1980] and [Schwiderski, 1980]; they will be abbreviated in the

text as [V], [E], [PH] and [S], respectively.

Effect of the self-.ravitation of tidal waters on the potential. We

begin by presenting the effect of (discontinuous) point masses on the poten-

tial at point i, denoted Vs:

Vs  = G M Mj/ij

where

G = gravitational constant,

M. = mass of the j-th point mass,

= distance between the point i (of evaluation)and the j-th point mass.
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If M. is replaced by pj.jdoj, where p is the average density of mass (here

water) in the column of height C and cross-section ds2, the potential becomes

Vs = G ) P.j i dj (3.9a)

Since water has continuous distribution we can write

Vs = GffPC Ix-X'I- ' dS' (3.9b)
S

where, in addition to the symbols already introduced (e.g., C represents the

height of the tidal waters), the following representations apply:

x ... position where V5 is being evaluated

x ... position of the element of integration

dS'... surface element

S ... integration domain, the ocean surface.

Equation (3.9b) is essentially (55) of [V] (the signs in this reference indicate

"correction" rather than "effect").

The simplifications to be used throughout are the spherical approxima-

tion and the assumption of constant density of the sea water. The following

relations thus hold true only approximately, but the sign of equality can

nevertheless be used if one keeps in mind this limitation. Under these circum-

stances, from (3.9b) we obtain

Vs = GR
2p fC Ix-x'l-  d' , (3.10)
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where

R = mean radius of the earth

p = mean density of the sea water

dQ' = solid angle element (e.g., coso'd 'd')

= ocean surface over the unit sphere

Equation (3.10) is, in fact, the expression for Vs on page 105 of [E]. All the

relations written in terms of G and R could also be written in terms of g accord-

ing to

g GM e/R2  (3.11a)

or

GpR = gR3p/M , (3.11b)

where Me is the earth's mass.

The distance 7, ' can be expressed as

- x'j = R Ix - x , (3.12)

I where the points x, x' are now located on a unit sphere; either pair is

separated by the central angle p such that

cos' = sine sin4' + cosO cos' cos(X'- X) , (3.13)

where O,X are the latitude and the longitude, respectively. The reciprocal

value of the distance x, x' may be expanded in an infinite series of Legendre

polynomials in the argument cosip, P n(cosp), so that we can write

(3.14)

Ix- x' I  (2 sin ) = [2(l-cos ]" I n (cosP )
n=O
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With (3.12) and (3.14), equation (3.10) becomes

Vs = (gR3p/Me)ff E(2 sin )- dQ' = (gR3P/Me)S E [2(1 - cos)] -  dQ'

= (gR3P/Me)Sj X Pn(cosP) dM' , (3.15)e n

where (3.11b) has also been taken into account and where the notation

n n=O

has been introduced. The first expression in (3.15) corresponds to a formula

on page 106 and to one building block of (A1O) in [E], the second expression

corresponds to (59) of [V], and the third expression corresponds to (56) of

[v].

Because the integrand in the last expression of (3.15) is a well-

behaved function, the summation can be interchanged with the integration and

we have

Vs  = (gR3p/Me ) E5 Pn(cosP) d'= (Vs)n (3.16a)
n Q nr

(Vs)n = (gR3O/Me)TfEP (cosip) dQ' (3.16b)

In these equations the potential Vs is expanded in terms of surface spherical

harmonics (this is always possible for a function on a sphere) and its explicit

form is given.

The vertical displacement of an equipotential surface caused by the

self-gravitation is

ua = s/g (3.17)
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which is the same as equation (60) in [v]. Upon dividing (3.15) by g, one

obtains

ua = (R3p/Me )ff(2 sin p)-1 do' (3.17')

which could be further expanded to include the other two expressions in

(3.15). From (3.16a,b) it similarly follows that

ua = (R3p/Me ) Y ffE P n(cos$) do' : Z (ua)n , (3.18a)
n n

(u a)n = (Vs)n/g = (R3p/M e) f Pn (cosp) do' (3.18b)

The formula giving (u a)n can be rewritten if one takes advantage of

the result from Appendix 2 (see A2.6) derived in the spherical coordinates

(e,X), where 0 is the colatitude. If pe further denotes the average earth

density,

Pe = Me/[(4/3)7TR']'

equation (3.18b) becomes

(ua)n = [3p/(4rrPe)]JS (a',X') Pn (cosp) do'

But according to Appendix 2 the last integral is [4Tr/(2n+1)]Cn(o,A), hence

(ua)n = [3/(2n+ 1)] (p/p e)n

where n - n(,A) is the surface spherical harmonic of n-th degree, associated

with . We can thus write
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(Ua)n = anEn , (3.19a)

and

ua = an  n (3.19b)
n

where
(3.19c)

a n [3/(2n+ 1)] (average water density/average earth density).

The expression for an agrees with [PH], page 393, if one disregards an apparent

typographical error in that the first factor therein is written as (3/2n+ 1).

Effect of the ocean tidal loading on the ocean bottom. The deforma-

tion of the ocean bottom due to the ocean tidal loading is symbolized by u .

In our context, it is a function on a sphere which can be expanded in surface

spherical-harmonics as

u t (u)n• (3.20)
n

As is explained in [v], pages 21 and 22, the displacement ua serves as a norm

for u., giving rise to the following load numbers (sometimes called Love load

numbers) for all possible wave numbers n:

In
I h' = (Ud)n/(Ua)n"

This together with (3.18b) and (3.20) yield

(3.21)

uZ= h (ua) n 
= (1/g) I h (Vs) n = (R3p/Me) I hnf 5Pn (cosp) dQ' ,

n n n

where the second equality corresponds to (64) in IV]. If, in the last expres-

sion, the summation and the integration are interchanged one has
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uz = (Rlp/Me)ff h,, Pn ) dQ' =R2p U'() d', (3.22a)

nQ

U'( = (R/Me ) hn Pn (cos ) (3.22b)
n

The first equality in (3.22a) corresponds to (65) and (66) of [V], the second

equality serves as another building block in (AIO) of [E], and (3.22b) is the

definition appearing in (A5) of [E].

If (ua) n in the first equivalence of (3.21) is taken from (3.19a),

we write at once:

u = n En (3.23)
n

which correspondso the "ocean induced vertical component of the solid earth

tide" as it appears on page 393 of [PH].

Effect of the ocean tidal loadin on the potential. The disturbing

potential due to the deformation u k just treated is denoted as V b . Similar

to (3.17), it gives rise to the displacement u i of an equipotential surface,

u i = V b/g .(3.24)

i This displacement can again be expanded in surface spherical-harmonics:

ui  u~ (3.25)

n

The statement that followed (3.20) now applies to u i in conjunction with

another kind of load numbers:

k' (ui)n/(ua)n
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This together with (3.18b) and (3.25) yield
(3,26)

ui = kn (Ua) n  (I/g k' (Vs) n  (RI P/Me ) jk' Pn (cos ) dW
g n n

nnn

where the second equality corresponds to (64) of [V]. Upon interchanging the

summation and the integration in the last expression we obtain

ui = (R'P/Me) ffS k'n Pn (cosip) dQ' = (R2p/g)ff V '(j) do' , (3.27a)
Q nQ

'() = (Rg/Me) k' Pn (cos ) (3.27b)
n

The last expression in (3.27a) serves as a third building block in (A10) of

[E], and (3.27b) is the same definition as in (A5) of [E]. From (3.24) and

(3.27a) we also have

Vb = gui = R
2p ff ¢ '(4) dQ' (3.28)

If (u a)n in the first equivalence of (3.26) is taken from (3.19a),

it follows that

u : k' ctn En (3.29)

n

Upon utilizing this form for Vb , one obtains

Vb = g 1 'n n (3.30)
n

which corresponds to the second part of the "ocean induced potential at the

mean sea surface" as presented on page 393 of [PHi].
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The total tidal potential causing the water to depart from its

average level is composed of the astronomical tidal potential F, of the

additional tidal potential k due to the earth deformation, of Vs due to

the self-gravitation, and of Vb due to the ocean loading:

Ctot = (1+k)r + Vs + Vb . (3.31)

When written in terms of (3.17) and (3.24), this becomes

tot = (1+k)F + gu + gui , (3.31')

which, with (3.19b) and (3.29), also is

'tot = (1+k)r + g 1 (1+kn ) an En
n

this formulation corresponds to that on page 393 of [PH]. If the .iater level

adjusted itself instantaneously to an equipotential surface implied by (3.31'),

its height above the mean surface would be

s 'tot/g = (1+ k)F/g+ ua + ui  (3.32)

This quantity would not be the same as s obtained from the solution of the

LTE, involving the forces of friction, viscosity, etc. This fact is reflected

by the prime attributed to s in (3.32).

The departure of the ocean bottom from its average value is given as

= hr'/g + us . (3.33)
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If u2 is written as in (3.23), equation (3.33) becomes

Cb = hr/g + X h' an
n

which again corresponds to the formulation on page 393 of [PH]. Under the

simplification (3.32), the ocean tide would be

(1+k- h)r/g + (u a +u. u ). (3.34)

If, in addition, we also ignored the self-gravitation and the ocean

loading effects, i.e., ua, ui and u2 in (3.32)-(3.34),we would havea 1 9

l= (1+k)r/g ,

= hF/g

S b (1+ k- h)r/g

But this is the simplified tidal model used in [B] and recapitulated in the

previous section, where the earth deformation corresponds to the above E I

the "geocentric tide" corresponds to " , and the "measured tide" correspondsfs
to " . The above process of successively greater simplifications has thus

brought into focus the assumptions and simplifications present in the model

of [B].

Most of the quantities just discussed are shown in Figure 1. The

figure represents the realistic tidal model and involves the solution of the

LTE; this fact is illustrated by the presence of the quantity y. A brief

description of the quantities in Figure I follows:
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F/g = equilibrium tide

y = quantity resulting from the solution of the LTE

kr/g = additional tide (due to the earth deformation hr/g)

ui = Vb/g = displacement due to the ocean tidal loading on
the ocean bottom (i.e., due to u )

ua = Vs/g = displacement due to the self-gravitation of
a S tidal waters

hr/g = earth deformation (called also solid earth tide),

u, = ocean bottom deformation due to the ocean tidal loading

Ss = surface tide

Eb = bottom tide

= ocean tide

From Figure 1 it follows that

Es = (1+k)r/g + y + u a + ui  (3.35)

Eb = hr/g + u., (3.36)

= s - b = (I+k-h)r/g + y + (ua + ui - ud) (3.37)

It is also apparent from the figure that

= h(instant.) - h(ave.) . (3.37')

Without the presence of y, (3.35)-(3.37) would reduce to (3.32- 3.34).
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- - Ua - instant, water surface

kr/g
E Es-Ebk

(ocean tide) y

surface tide)

rig

h(instant.) E

ave. water surface
- geoid

h(ave.)

u instant, ocean bottom

hr/g Eb(bottom tide)

ave. ocean bottom

Figure 1

Schematic display of various quantities related to the tidal phenomenon

-39-



At this point, three remarks can be made upon examining Figure 1.

First, identifying the average water surface with the geoid indicates a few

approximations (such as considering the average water surface to be equi-

potential, which is not exactly fulfilled in several oceanic areas) and, more

importantly, it indicates that the permanent tide is ignored in the present

considerations. However, this tidal effect, which essentially transforms

the "static geoid" (of interest) into the above geoid, is treated separately.

In fact, all the pertinent long-period tidal effects are envisioned to be

treated separately along the lines of the simplified model; the realistic

tidal model as adapted from [E] was developed only for the principal diurnal

and semidiurnal tides. We note that in [S], pages 165 and 166, and in [Estes,

1977], Figure 1, the same identification (ave. water surface = geoid) was

made as in our Figure 1.

Second, we remark that for >O, one must have u £ <0 and thus also

ui<O; the response of ui to u k is qualitatively somewhat similar to the re-

sponse of the additional tide (kr/g) to the earth deformation (hP/g). On the

other hand, if &>0, the disturbing potential increases (see e.g. the illustra-

tive case 3.9a) and thus the corresponding geoid undulation also increases,

i.e., one has ua>O. Therefore, ui and uz have the opposite signs from that of

ua and should have been directed downwards in Figure 1 where and u a have an

upward sense. In Figure 1 of [S], ug, is indeed represented in this manner and

is appropriately called the-solid earth dip, eo (i.e., the earth-dip response

to the oceanic tidal load ). But this is merely a matter of convention since

in this reference b is expressed essentially as hF/g - (positive quantity, eo)

while in the present study Cb is given as hr/g + (negative quantity, up). A

similar comment would also apply to ui, as may be gathered upon consulting
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equation (9) of the same reference. Figure 10 of [V] where kn' and hn' are

seen to be negative for all values of n helps us to verify, in a plausible

way, that the quantities ui and u. have the opposite signs of ua

The last remark concerns the notations used in the figure as well

as throughout the text. As stated in [V], page 10, only the surface values

h2  k 2 of Love numbers hn , kn are used in geodetic applications, in which

case the symbols h , k are often employed. These symbols have been adopted

in the present study. It was demonstrated on pages 3 and 4 of [V] that the

astronomical tidal potential, r, can for most practical purposes be equated

with F of the development in terms of Legendre polynomials. It should thus

be borne in mind that in our context F, ki and hi could replace r2 , k2 2

and h2F2 or I in' r kn rn and I hn n ' respectively, used in some references.
n n n

In the upcoming derivation, the horizontal components of the force

corresponding to (3.31) or (3.31') will be needed along the X- and -coordinate

lines. Since one can write for this force:

F' = grad tot ,

the required components are

(3.38a)

F = [1/(R coso)] rtot/ X [1I/(R cos )][(1+k)*/1+g (ua + ui)/DX]

(3.38b)

F = (1/R) Kt/3 = (1/R) [(1+k) 3P/ p + g (u +ui)/ 0].
0tot a 1

These components will be used, together with the components F" and F' of F',

the force of friction and viscosity, in the LTE in the form (Al) of [E]. The

components of F will be transcribed from this reference, but otherwise the
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final form of these equations will be rederived independently, for the

purpose of scrutinizing the quantity & needed for a refinement of alti-

metric applications. The model of [E] is advantageous especially because

the tidal elevations for all the diurnal and semidiurnal constituents of

interest are developed in terms of spherical-harmonic tidal coefficients,

tailored for use in the first phase of satellite altimetry adjustment

(global adjustment) with the spherical-harmonic potential coefficients as

parameters.

The first two (out of three) LTE presented in (Al) of [E] read

Du/t - 2w sinp v = -[g/(R cosq)]9ES/ A + F + F;' , (3.39a)

v/ t + 2w sinp u = - (g/R)as/ao + + F , (3.39b)

where, in addition to the symbols already defined, u and v are the eastward

and northward components of the water velocity and w is the rotational veloc-

ity of the earth. These equations involve not only the tidal generating po-

tential (it gives rise to F, P), but also the forces of friction and

viscosity (see F ', P mentioned earlier) and the Coriolis force (it is

associated with w on the left-hand sides of 3.39 a,b). The third equation

in (Al) involves the water depth and it will be transcribed directly into the

final formulas. The three equations (Al) correspond to equations (5) - (7)

of [Lisitzin, 1974].

Next, F; and F from (3.38 a,b) are substituted into (3.39 a,b),

together with Es' expressed fromFigure 1 as

s =  +  b = E + hr/g + u k' (3.40)
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This results in
(3.41a)

au/at - 2w sin v = [1/(R cos4)] [-ga&/aX + (1+ k-h) ar/ax

+ ga(u + u. - u )/AX] + F'
a I ~

(3.41b)

3v/at + 2w sin u = (I/R)[-gaD/Dp + (1 +k- h)ar/aq

+ ga(u + u u + . :1

According to (3.19b), (3.23) and (3.29), we could write

ua + ui - u= (l+k'-h'_)tnEn
n

However, to relate this quantity to the results in [E], we use (3.17'), (3.22a)

and (3.27a):

(3.42)
Ua+ ui -u = R 2 p ff E [(R/Me)(2 sin P)- + (1/g)4' (£p) - U' (p)]dQ'.

In agreement with [E], 1' is defined at ( ,X,t) as

F' = g(u a + u i - ud)  (3.43a)

With the aid of (3.42), equation (3.43a) reads

' = .fl"Green" dsl' , (3.43b)

where the Green's function is

"Green" = R2P[Rg/M e )(2sin )'I +,(0)-qU'(p)] . (3.43c)

The last two equations correspond to the result on paqes 106 and 107 of [E],

especially equation (AIO).
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The last step consists of utilizing (3.43a) in (3.41 a,b) and

transcribing F ',F" from [E], page 107; the two equations are then comple-

mented by the third equation in (Al), page 93 of [E]. The result is

3u/t - 2w sin v = [1/(R cos )] [-g3 /3X+(l+ k -h) 3r/aX+ ar'/a

- Cr(U2+v2) u/H+ChvAU , (3.44a)

v/Dt + 2w sin u: (1/R)[-gaE/30+ (1+ k -h) ar/; + r/

- Cr(U2+v2) v/H+ ChvAV , (3.44b)
r h

E/at = -[I/(R cos )] [D(Hu)/;X+ (H vcoso)/30] ,(3.44c)

where A is the horizontal Laplacian, Cr and Chv are the coefficients of friction

and horizontal eddy viscosity, and

H = h(ave.) + h(instant.)

Detailed information about the numerical solution of equations (3.44 a-c) can

be found on pages 106-117 of [E].

After E has been solved for, the quantity s , directly related to

satellite altimetry, can be expressed as in (3.40), namely

s =C + hr/g + u , (3.45a)

where

hr/g = h - (equilibrium tide) (3.45b)

In practical adjustments of altimeter data, the quantity u Z is envisioned

either to be neglected or to be expressed very approximately as some multiple
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of F. The latter choice could be carried out in conjunction with the M

constituent for which & in [E] is expressed through the solution of (3.44 a-c)

in an iterative process (in this case r is made to correspond to M2 ). The
2i

remaining semidiurnal and diurnal constituents are treated, in this refer-

ence, in a more approximate fashion by ignoring F'. In order to express s

as accurately as practicable the quantities ua , ui and u as well as their

combinations (ua +ui ) and, especially, ua +ui - u =r'/g from (3.43a) will be

examined in the light of the numerical solutions presented in [PH] and [E].

The contour maps in Figures 1, 3 and 5 of [PH] depict E for the con-

stituents M2, S2 and K1, respectively. The contour maps of (u a+U i) for these

constituents are shown in Figures 10, 11 and 12, and the contour maps of u

are similarly shown in Figures 13, 14 and 15 of this reference. When examin-

ing the results for u 9 we imagine the phase changed by 1800 and, accordingly,

the sign changed. Upon inspection, the quantity -u z is then seen to be es-

sentially "in phase" with E, consistent with our earlier discussion.

For the M2 constituent, E ranges mostly within 25-50 cm (exceptionally,

it reaches over 1m), while (ua+ u i ) ranges mostly within 1-3 cm (exceptionally

4cm),and -u ranges mostly within 1-4cm(in two coastal areas it reaches

about 6 cm). The phases as well as the highs and lows of these quantities have

similar characteristics over most of the global oceans. From this inspection

one can draw very approximate tentative conclusions:

ua +u i  0.05&, -uz>O.05c; ua +U -u - 0.10. (3.46)

Nearly the same conclusions can be reached also for the S2 and K1 constituents.

In the case of S2 , is mostly in the 10-30 cm range (exceptionally 40cm),
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u a+u.) is in the 0.5- 1.5cm range and -u. is mostly in the 0.5-1.5cm

range (exceptionally 2 cm). The ranges for the K1 constituent are similar to

these.

Next, [E] is consulted with regard to the M2 constituent for which

contour maps are presented. Figures Al (for ), A8 (for ua +u -u A9 (for

aaU a) and A10 (for -u) allow the following observations: is mostly in the

10-50 cm range (exceptionally 80cm in the Equatorial Pacific and east of

Australia); ua +ui - u is mostly in the 1-5cm range (exceptionally 12cm in
a 1 9

the Equatorial Pacific); and ua and u., both having very similar characteris-

tics, are typically in the 1-3cm range (exceptionally 7cm in the Equatorial

Pacific). There is a generally good agreement in the phases and in the rela-

tive magnitudes of these four quantities. A visual inspection leads to the

following approximate conclusions:

ua >O.O5 , -u z 0.05F ; Ua+u i - J = 0.10C . (3.47)

The last relations in (3.46) and (3.47) are supported by the result described

on pages 170 and 171 of [S]. Transcribed into our notations it states that

ua + ui - u, = F'/g = 0.10&

obtained "after evaluating the Green's function representation of the three

oceanic tidal load effects" (page 171). On the same page of [S] it is also

stated: "The author's computations supported the marginal effects of oceanic

tidal loading found by Estes (1977)."

From the above, especially from the contour maps associated with the

M2 constituent, the various effects can be estimated very approximately as
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follows:

Ua 0.06 , ui  -0.02E, Ua +U 0.04E;

u 0.06 ; (3.48)

u +-u 0. 10.

Of these, (3.48) is the most important, allowing us to express E from

(3.45 a,b) as

Es 0.94E + h '(equilibrium tide) (3.49)

This formula could be used in conjunction with any constituent whose E is com-

puted rigorously as in (3.44 a-c). In [E] such a computation was performed

for the M2 constituent. As was already mentioned, the self-gravitation and

the ocean loading effects were neglected in [E] (r' was disregarded) during

the computations of E for the remaining diurnal and semidiurnal constituents.

To be consistent with this procedure when adopting the spherical-harmonic tidal

coefficients from [E], we neglect u9 in (3.45a) applied to these constituents,

in which case (3.45 a,b) yield

Ss = F + h x (equilibrium tide) (3.50)

The above analysis suggests the use of (3.49) in conjunction with

M2 and the use of (3.50) in conjunction with all othe other diurnal and semi-

diurnal constituents considered. In fact, (3.50) could have been designed

for M2 as well since, according to the earlier results taken from [PH] and

[E], the magnitude of uz is usually well below the 5 cm level and the effect

of uX could also qualify as being only marginal. However, we prefer to use
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a more accurate model (3.49) because not only the tidal amplitudes, but also

the phase angles are now considered to be subject to adjustment, and the model

is nonlinear in the phase angles. Hence the best possible initial values

should be sought for the parameters appearing in the linearized observation

equations. Although one could argue that the value is not significantly

different from the value 0.94C for this purpose, it is equally true that the

more accurate model for M2 represented by (3.49) is as easy to handle as the

model represented by (3.50).

As was done by Estes [1980] for the desired diurnal and semidiurnal

constituents, the ocean tide can be expressed by means of spherical-harmonic

tidal coefficients encompassing, through a least-squares fit, the solution of

the LTE. For a given tidal constituent, these coefficients lead to an expansion

similar to equation (3) of [Estes, 1980]. This formulation is described with

the aid of the following model:

j = Aj cos(aj - .)- A. cos4j cosaj + A. sinpj sina. , (3.51)

where

Fj = constituent height observable by tidal gauges,

= Greenwich argument of the constituent,

A - A.(q,A) = amplitude of the constituent,

- .(qx). phase angle of the constituent.

The longitude (A) of the place of observation is not explicitly needed since

it is included in p.. The angles a. are thus computed as in (2.43a) -(2.44d).
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Equation (3.51) is reformulated to read

a. cosaz + b. sinai , (3.52a)

where
(3.52b)

aj a (X) A. cosp : ! (aj cos mX+b.n sin mX)P nm(sin@),
n m nm 3nm n

(3.52c)
b b(,X) A.s = (c. cos mX+d sin mX)P (sinp),j - i Cmnm nm nm

from which it follows that

A. (a + b.) , (3.52d)

cos~j a a /Aj , sin ai b b /Aj . (3.52e)

In these formulas a*n , etc., are the spherical-harmonic tidal coefficients

of degree and order (n,m) belonging to the constituent j, and Pnm(sino) are

the associated Leqendre functions in the argument sin4,O being the qeocentric

latitude. In the next chapter, the above formulation will be used in conjunc-

tion with the model for s seen previously.
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4. TIDAL ADJUSTMENT

4.1 Inclusion of Tidal Effects in the Altimetry Adjustment Model

The basic model equation of satellite altimetry was written in

equation (3.1) of [Blaha, 1979] as

H = R-r+d,

where H represents the altimetry, R is the distance from the geocenter to

the satellite at the time of observation, d is a correction, always smaller

than 5m for the satellite altitude under 1,000 km as described e.g. on

page 28 of [Blaha, 1977] or in [Blaha, 1977'], and r is the distance from

the geocenter to a sub-satellite point on the sea surface; it is given on

page 15 of [Blaha, 1979] as

r = r' + N

where r' is the corresponding distance to the (geocentric) reference ellipsoid

and N represents the geoid undulation. The main feature of an earlier approach

consisted in expressing N (and thus r) in terms of the geoidal parameters only,

as if the measured sea surface coincided with the qeoid. Although this model

deficiency was of little consequence in past adjustments of GEOS-3 altimetry,

it will be at least partly removed from the SEASAT altimetry model by separa-

ting N into two parts:

N = N' + N"

where N' is expressed in terms of the qeoidal parameters as before, but where

N" should ideally represent the separation between the qeoid and the measured

sea surface.
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In this analysis, N" is expressed in terms of the 11 tidal constitu-

ents considered. A physically meaningful model can be conceived by allowing

some or all of the tidal amplitudes and phase angles to adjust within the

overall adjustment of satellite altimetry. Due to a high degree of uncertain-

ty in the long-period constituents (see, e.g., the "empirical factor" mention-

ed in [B]), the model for these constituents should be linear. This will be

ensured by subjecting only the tidal amplitudes to adjustment, not the phase

angles. On the other hand, since the diurnal and semidiurnal tidal effects

are assumed to be known to a better degree of accuracy, both these kinds of

parameters will enter the adjustment.

Accordingly, 18 tidal parameters will be added to the adjustment of

SEASAT altimetry: 4 amplitude parameters (Pj) due to the long-period constitu-

ents, j=A , Mf, Mm, SSa; 3 amplitude parameters (Pj) and 3 phase-angle para-

meters (Q.) due to the diurnal constituents, j=K 1, 01, P and 4 amplitude

parameters (P.) and 4 phase-angle parameters (Q.) due to the semidiurnal con-

stituents, j=M2, S2 , N2, K2. In considering that the global adjustment con-

tains some 225 terrestrial parameters (spherical-harmonic potential coeffici-

ents in a 14,14 truncated model) and the regional adjustment may contain a

comparable number of parameters (point-mass magnitudes), the addition of 18

parameters at either level does not increase the computer burden by a great

amount, both from the run-time and storage requirement standpoint.
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4.2 Observation Equations

In agreement with Section 4.1, N", representing that part of an

"instantaneous geoid undulation" sensed by the altimeter which can be at-

tributed to the tidal constituents under consideration, can be expressed as

(4.1)

N" = (hA + hMf + hn + hSS) + (hK + h0 + hP ) + (hM+ hs+ hN + hK2)
o a 1 1 1 2 2 2 2

where the constituent heights h. are the a priori values (not equilibrium in

general). The first group identified by the parentheses represents the

long-period constituents, the second group represents the diurnal constituents

and the third group represents the semidiurnal constituents.

From the above, the tidal part of an altimeter observation equation

is formed in a familiar fashion through a linearization process. As indicated

earlier, there will be only one adjustable parameter per long-period constitu-

ent, namely the amplitude parameter (P.); the diurnal and semidiurnal con-

stituents will comprise two adjustable parameters each (PV, Q.). The parameter

P. represents a relative amplitude correction (i.e., an amplitude correction

divided by the amplitude itself) while the parameter Q. represents a correc-

tion in degrees to the phase angle. The observation equations are developed

in terms of the available a priori values for hi, i.e., the linearization pro-

ceeds with the initial values Pj=O, Qj=O. When evaluated using the a priori

information, (4.1) represents the tidal contribution to the constant term in

an altimeter observation equation. Upon denoting the pertinent coefficients

by pj and qj in a self-evident manner, the total tidal contribution to an

altimeter observation equation can be symbolized by
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N,,a _ (PA oA+ PMfMf+ PMmPMm + PssaPssa ) + (PKPK 1+ qK QK1 + P0 P01 +qoiQ01

+ Pp 1P 1
+ qp QP1) + +M2PM2  MQ + PS2Ps+ qs Qs2+ PN2PN2+ qN2QN2

+ PKPK+ qKQK) + N" (4.2)

where the superscript "a" indicates an adjusted value and where N" is evaluated

by (4.1) as stated above.

As is apparent from Section 4.1, an original altimeter observation

equation (without the tidal part) should now be modified by adding -N" to the

original constant term, augmenting the row of coefficients by

-PAO ' -PMf' _P!i' "PSSa; -PK 1  I q0  -q

-PM- -p 2 PS PK q (4.3)
2 2 2 2 2 2 2 2

and augmenting the column of parameters by

PAO , PMf' Prfm' PSSa; , ,i K 1P01 0 9P 1 OP I
PKI1 K1 01' 01 1P 1

2 QM22 PS2  PN 2 2 (2

The formula (4.2) can also be written as

N"a = ha

where the adjusted constituent heights are

ha p.P. + qjQj + hj (4.5)
hj 33 33 3
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The coefficients p for the long-period constituents will be derived first

(the coefficients qj are immaterial in this case), followed by a derivation

of the coefficients pj, q for the diurnal and semidiurnal constituents.

Long-period constituents. The model equation for these constituents

corresponds here to the simplified model of Section 3.1; in agreement with

the latter and with [B], Section 3.3, we can write

h. A. cosj , (4.6a)

A. = c A. ' (4.6b)

c = (I+k)e (4.6c)

where

A = equilibrium amplitude

t. = Greenwich or local argument (longitude is
irrelevant here)

1+k 1.29 (k is a Love number)

e = adopted "empirical factor"

From (4.6a) one has at once:

dh. = dA. coscj = (Aj cosaj)(dAj/Aj)- hjPj.

Accordingly,

a = h. + dhj h.P. + h. , (4.7a)

and thus

pj = h. . (4.7b)
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The next step consists in evaluating h. Under idealized conditions

(equilibrium tide allowing for the earth's deformation, see page 49 of [B]),

in conjunction with (4.6c) one would have

e' = 1, c = 1+k = 1.29

The value used by Lisitzin [1974] -- but attributed to another source --

corresponds to

e" 3.7 , c (1+k) x 3.7 4.8

which was also adopted in [B]. However, the above value for e" is highly

uncertain and could be too high. To be on the conservative side, we may

adopt an average value,

e = 1(e' +e") 2.35

and thus

c = (1+k) x 2.35 = 3.03 (4.8)

For the equilibrium amplitudes we have from Section 2.1:

A' = 0. 1073m(1-3 sin 2p)
0

A~f 0.0131m(1- 3 sin 2o)

A~m = 0.0125 m (1 - 3 sin 2 )

A' = 0.0097 m (1 - 3 sin 2
0)

If these results together with c in (4.8) are utilized in (4.6 a,b), one

obtains
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hA = 0.325m(1- 3 sin 2 €) , (4.9a)
0

hMf 0.040 m (1- 3 sin 24) coso1xf , (4.9b)

hM = 0.038m(1-3 sin 2p) coSUMM , (4.9c)

hSSa = 0.029m(1-3 sin 2
0) COSc'SSa .  (4.9d)

The arguments cx corresponding to SEASAT observational epoch appear in

(2.42 a-d) while a'. appear in (2.39 a-c)..3

Diurnal and semidiurnal constituents. According to (3.49) and

(3.50), the model equation is

h. : c' . + h K (equilibrium tide)j , (4.10)

where

c' = 0.94 ... M2 constituent

c' = 1.00 ... the other diurnal and semidiurnal constituents;

i = a cosxj + bisinx ... ocean tide , (4.10')

a. = A cosW., b. = A sin*. ... values computed from

spherical-harmonic tidal coefficients as in

(3.52 b,c)

aj = Greenwich argument, as in (2.43a)- (2.44d) with a. in

(2.40a) - (2.41d);

h - 0.62 (a Love number)
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(equilibrium tide). = A! cosj (4.10")

A, = equilibrium amplitude, as presented below,
J

aj = local argument, as in (2.45 a-g).

The A' for the diurnal constituents are gathered from Section 2.2

as

A' = 0.125m sin 2,
K1

A6 = 0.081m sin 2q,
1

A'i = 0.047m sin 2.
P1

For the semidiurnal constituents we have from Section 2.3:

A 2 = 0.252m cos2  ,

A' = 0.113m cos 2  ,

2
A4 2: 0. 049 m cos2 ,

A% = 0.023m cos 2 .

Since (equilibrium tide). is not adjustable, one has

dh. = c, dE *(4.11)

From (4.10') and the relation that followed we obtain

: A. cosp cos. + A. sinip. sina. ,
.3. .3 3 .3 .3 .

d&. : (A. cos ij cosa, + A. sin~ji sinaj)(dA./A )

+ (1/p)(-A. sin Ij cosa. + A. cos . sino.)p dpj
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this is

dj (a. cosct + b. sincj)P. + (1/p)(-bj cosaj + aj sincj)Qj , (4.12)

where

Pj - dAj/A., Qj E p dj =- dip O I

with p =57.295780 transforming the correction to the phase angle from radians

to degrees. Accordingly, (4.10), (4.11), (4.12) yield

(4.13a)
aha = c'(aj cosj + b. sincxj)P. + (c'/p)(aj sinti - b. coscj)Q + h,

and thus

pj c'(a cosaj + bj sinct.) , (4.13b)

qj = (c'/p)(a. sincj - bj cosaj) , (4.13c)

hj pj + h - (equilibrium tide) (4.13d)

We may insert a remark that if needed, a simple iterative process

in A. and pj could be conceived along the following lines. From the initial

values a. and b., implied by the spherical-harmonic tidal coefficients, one

computes

A. (a3 + b3)"

and

=j arc tg(b./a.)
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The adjusted values can then serve as new starting values denoted by primes:

A = A(I+P) , (4.14a)

* = £p. + Qj/p , (4.14b)

from which the new starting values a' and b' are computed as

a' = cosC i , (4.15a)

b. = At sin,' . (4.15b)
J J

If the primes are omitted the adjustment process may start at this point, as

if such initial values were directly available.
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4.3 Solution

The observation equations consist of rows Ai, where i runs through

all the observations, and of the correspondino constant terms L. The

matrix (f observation equations (A) consists of all the rows Ai and the vector

of constant terms (L) consists of all the terms Li. The altimeter observa-

tions are weighted independently; all of the Ai and Li are normalized

through the division by the appropriate sigma (square root of the variance).

Thus the normal equations read

(A TA)X + ATL = 0 , (4.16)

where X is the vector of all the parameters. The parameters involved in the

short-arc adjustment of satellite altimetry are divided into three groups:

1) corrections to the spherical-harmonic potential coefficients, 2) tidal

parameters and 3) corrections to the state vector parameters. The first

group is envisioned as consisting of 225 parameters correspondinq to a (14,

14) truncated spherical-harmonic model. The second group, absent in previous

adjustments of satellite altimetry at AFGL, comprises the 18 parameters

described earlier. The first two groups of 243 "terrestrial parameters" are

assigned permanent storage in the computer core. The third group consists

of six state vector parameters per (short) orbital arc; these parameters as

well as the appropriate portions of normal equations are assigned reusable

storage which is one of the main features of the short-arc algorithm described

in detail in several AFGL reports. With the aid of this algorithm, the state

vector parameters are eliminated from the normal equations and are solved for

later (after the solution of the terrestrial parameters), arc by arc.
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The row Ai in this study is composed of the "regular" entries as-

sociated with the original adjustment of satellite altimetry (without any

tidal considerations), augmented by the 18 elements shown in (4.3). The
value L. is obtained by adding the value -N" for the observation point i to

1

the "regular" value of the constant term, where

-N" - h. (4.17)
3

This can be expressed as

Li  L! + L'.' (4.18)

where L represents the "regular" value of the constant term and L' (computed

through equation 4.17) is the contribution due to the considered tidal effects.

The vector ATL in (4.16) is computed as

ATL : AT Li  (4.19)

In the short-arc algorithn, this operation is performed for all the observations

on one arc, after which the elimination of the pertinent six state vector

parameters takes place. Subsequently, the same procedure takes place for the

next arc, and so on.

At this juncture, a useful optional feature can be incorporated in

the adjustment algorithm by simple means. One may ask, what would the vector

in (4.19) become if all the L" happened to be zero? Clearly, the answer is

T1

ATL ,  = AT Li • (4.20)
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One should note that no dimensions have changed, in other words, we have

not reverted to the "regular" case without the tidal parameters. However,

by virtue of the extra effort undertaken in (4.20) the computer program

is able to solve an adjustment problem not only the "new" way with the tidal

parameters, but also the "regular" way.

The key to this feature is the option to compute a "shadow" vector

to AT Li  In particular, corresponding to each AiL i there would be a "shadow"

vector ATL' treated in exactly the same manner as the original vector, i.e.,

one would proceed to the summation (see 4.19 and 4.20), to the elimination

of the state vector parameters, etc. The added tasks would in no way change

the operations applied to the matrix of normal equations. The added computer

burden in terms both of the run-time and storage requirements would thus be

minimal. In order to obtain the solution corresponding to the absence of

tidal parameters, the normal equations would be resolved using the finai

"shadow" vector in conjunction with very large weights (i.e., very small a

priori sigmas) attributed to the tidal parameters. Since this "shadow" vector

corresponds to the zero constant terms L' and since the tidal parameters would

be held essentially fixed at their initial values which are zero by construc-

tion, any tidal consideration would be virtually eliminated from the overall

adjustment. It is to be noted that in a global adjustment of satellite alti-

metry, the formation of observation equations and the formation of normal

equations together with the elimination of the state vector parameters require

one or two orders of magnitude greater run-time than the actual solution of

normal equations; once again, the computer burden needed in performing the

added task would be minimal. The fruit of this undertaking consists in the
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possibility of comparing the results of a "new" adjustment (in which the tidal

parameters are attributed realistic weights) with the results of a "regular"

adjustment without tidal parameters. I'lith the possible exception of the C20

coefficient which, if weakly weighted, could be influenced by the exclusion

of the permanent tidal term, the adjusted spherical-harmonic potential coef-

ficients should compare well between the two adjustments, especially if the

altimeter data cover the oceans by a grid of passes distributed over a suf-

ficiently long time interval. In the presence of tidal adjustment the r.m.s.

residual is expected to be smaller -- by an amount which is of interest in

itself -- than the corresponding r.m.s. residual in the absence of tidal ad-

justment. In both cases it is assumed that the (weighted) state vector para-

meters are uncontaminated by tidal effects; clearly, this assumption holds

better with the tidal adjustment than without it.

In the closing paragraph of Section 4.2 the possibility of using an

iterative scheme for tidal parameters was described. However, at the present

such an approach is not envisioned for applications in real data reductions.

First, in its original form the iterative process could be employed rigorously

only if the tidal parameters were not weighted (or else changes would have to

be introduced in the constant terms so that the weights would be associated

with the initial values throughout the iterative process, not with the updated

values). Second, even if a number of intermediate results were saved on tapes,

the computer run-time would nevertheless increase significantly since in each

iteration, all the steps associated with the tidal parameters and with the

elimination of the state vector parameters (not to mention the solution of

normal equations) would have to be repeated. Finally, since the tidal model
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is linear in tidal amplitudes and nonlinear in phase angles, an iterative

process would be considered only if large corrections to the phase angles

were suspected. However, there is little likelihood that this will occur

on a global scale if reasonably good starting values of spherical-harmonic

tidal coefficients are available; the likelihood would be greater for a

regional adjustment. As a precautionary measure, one can ensure that these

corrections are within acceptable limits by attributing relatively small

sigmas (e.g., 50) to the Qj parameters. On the other hand, corrections to

the tidal amplitudes may be large. If desired, or if littlea priori information

exists, the P. parameters can be weighted loosely without any ill effects, at

least in theory. This property is especially useful with regard to the long-

period constituents whose amplitude adjustment may shed light on the "empiri-

cal factor" e discussed earlier.

A few distinct situations associated with the weighting of tidal

parameters can be discerned at once:

1) Large apriori sigmas (i.e., small weights) attributed to both

kinds of parameters (Pi. Qi). In this case, the amplitudes

and the phase angles are essentially free to adjust. However,

as cautioned above, the linearization of the tidal model

could be compromised by large corrections to the phase angles.

A narrower class of adjustment problems could be considered

where the sigmas attributed to Q. are no longer large.

2) Small apriori sigmas for P., Q . The amplitudes and the phase

angles are essentially constant in the adjustment. This amounts

to correcting the altimeter observations for the (presumably)

known tidal effects and foregoing the tidal adjustment.
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3) Small a priori sigmas for P., Q in conjunction with zero

constituent heights. This corresponds to zero L.' values

and to the "shadow" vector approach discussed previously,

resulting in a "regular" adjustment with no tidal effects

considered.

The above three groups are special. A usual tidal adjustment cor-

responds to "realistic" sigmas which could be envisioned as follows:

Long-period constituents ... a 1.

This sigma is relatively large (a one-sigma correction would imply a magni-

tude of the amplitude itself), due to the uncertainty associated with the

empirical factor". Sigmas of 1.5 or 2 could also be adopted.

Dirunal and semidiurnal constituents ... ap, 0.5, aC. 10
3 0

The behavior of these constituents modeled through the spherical-harmonic

tidal coefficients (as computed beforehand with the aid of Laplace Tidal

Equations) is assumed to be reasonably well known. One could also consider

aQ 5 (in 0) which, in view of an earlier discussion, might offer some
Q

comfort with regard to the nonlinearity problem.
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4.4 Practical Notes

Tidal spherical-harmonic expansion. As explained in the closing

part of Section 3.2, a. and b. for the considered diurnal and semidiurnal

constituents are obtained through a spherical-harmonic expansion with the

tidal coefficients taken from [Estes, 1980]. These coefficients are com-

plete through the degree and order (12,12). One thus has for the j-th

constituent:

12 n
a. = m o (a. cos mX + b. sin mX)Pm(sin) , (4.21a)

Sn=Om= 1i- nm inm n

12 n
b. =I (c.n cos mX + d.n sin mX)P nm(sin) ; (4.21b)

n=o mr-o 3nm 3nm n

the ocean tide for this constituent is then computed by (4.10'). In these

equations, and A are the known geocentric latitude and longitude, respective-

ly, of the observation point associated with an event on a given satellite arc.

When computing the "regular" geoid undulation in a global (spherical-harmonic)

altimetric adjustment the following formula, adapted from equation (2.15) of

[Blaha, 1979], is used:

- 14 n
N = r* I (a/r')n I (ACnmCos mA + ASnmsin mA)Pnm(sin4) , (4.22)0n=2 m=O m mn

where 0 and A have the same interpretation as in (4.21 a,b) and where the

other symbols, explained in Section 2.1 of the same reference, are of little

consequence in this discussion. The similarity in form between (4.21 a,b)

and (4.22) makes the computation of a. and b. a trivial task; the sines and
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cosines of the multiple angles mX as well as the associated Legendre functions

Pm(sin) have all been computed (by recursive formulas) for the evaluation

of (4.22). This makes the spherical-harmonic formulation of tidal effects

particularly attractive in conjunction with a global adjustment of satellite

altimetry.

Tidal arguments. The state vector parameters on each arc, stored on

a magnetic tape, are preceded by the arc's ID. This ID gives the epoch time

in terms of the day number (in 1978), hours and minutes (UT time). For all

the individual events on the arc, the intervals AT = T - T are
event epoch

given in seconds and fractions thereof. The most economical approach to

evaluating the needed Greenwich arguments is to evaluate them for T andepoch

to add a correction due to AT by multiplying this interval by the rate of

change in at (0/second), gathered from Section 2.4. Thus we have

omf (event) = aMf (epoch) + AT n 0.000305010,

aMm (event) = am (epoch) + AT x 0.000151220,

'Ssa(event) = aSsa(epoch) + AT x 0.000022820;

OK (event) = (epoch) + AT - 0.004178070,
K1 K1

OL (event) = a 0  (epoch) + AT x 0.00387307u,

aPI (event) = apl (epoch) + AT - 0.004155260;
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(event) = a (epoch) + AT 0.008051140 ,

a$2 (event) = aS2 (epoch) + AT x 0.008333330 ,

a 2 (event) = ci2 (epoch) + AT x 0.007899920 ,
2 2

a (event) = a K (epoch) + AT x 0.008356150
K2  2

The local arguments follow, as usual, upon adding X to the Greenwich arguments

for the diurnal constituents and 2X for the semidiurnal constituents (nothing

is added in case of the long-period constituents).

Regional tidal adjustment. Based on the residuals from a global

adjustment of satellite altimetry, a regional adjustment in terms of point

masses can be performed. This approach, described e.g. in the AFGL reports

[Blaha, 1977, 1979, 1980], results in a more detailed local geoid. The point-

mass magnitudes have been the only parameters present in the past "regular"

approach to this second-phase adjustment where they have served in accommoda-

ting, in a least-squares sense, the first-phase altimeter residuals. The

point-mass adjustment could be complemented by tidal parameters in a manner

similar to that explained earlier. This possibility is now briefly outlined.

Since the only role of the tidal parameters in such an adjustment is to

"overcorrect" the values of P. and Q. from the first adjustment, the same

coefficients in the observation equations can be used as those computed pre-

viously. And since these coefficients are stored on tape for each observa-

tion, augmenting the observation equations in the second adjustment is a trivial

matter. These coefficients are applied with the positive sign because in the

second adjustment they serve in accommodating the geoidal residuals (minus
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the altimeter residuals). The column-vector of parameters is then augmented

by the 18 tidal parameters appearing in (4.4). The constant terms of ob-

servation equations, stored on tape, are simply minus the altimeter residuals

from the first adjustment. The weights associated with the tidal parameters

are suggested to be similar to those from the first adjustment, or perhaps

greater since a general fit of the modeled sea surface to the observed sea

surface has been accomplished and is not expected to change drastically in

the second adjustment if the point-mass region is reasonably large. Due to

the simple treatment of the tidal part in the point-mass adjustment, the run-

time requirements are virtually unchanged from its "regular" counterpart.

-69-



5. CONCLUSION

In the recent past, SEASAT altimeter data together with spherical-

harmonic potential coefficients (supplied by the GEM 10 model) and sets of

state vector parameters (supplied by the NSWC precise ephemeris) have been

adjusted at AFGL through the short-arc algorithm. In using several low

degree and order truncations of the spherical-harmonic (S.H.) model, it has

been observed that the empirical variance for geoid undulations is signifi-

cantly lower than the theoretical variance. The details of this analysis can

be found in Appendix 1, whose main findings are the following:

1) The SEASAT data, the ephemeris, the S.H. potential coef-
ficients and the reference field parameters all appear to
be of excellent quality;

2) The short-arc algorithm in conjunction with the seven-
minute criterion described in previous reports does not
introduce appreciable errors; and

3) Within the narrow band of frequencies considered (cor-
responding to the S.H. truncations between 8,8 and
16,16), the adjusted degree variances for geoid undula-
tions reach only about 56% of their theoretical values.

During past efforts at AFGL, the altimeter residuals obtained

from the global altimeter adjustment (with the S.H. potential coefficients

and the state vector components as parameters) have served in regional

modeling of short-wavelength geoidal features, as well as in studying geo-

physical phenomena such as ocean bottom topography. In this adjustment

the geoid has been assumed to coincide with the ocean surface as sensored
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by the altimeter and the sea-surface effects have been ignored. However,

due to increasing geophysical interest in a realistic representation of the

open ocean tide, the latest development of the short-arc satellite alti-

metry model allows for the inclusion of the most important tidal constitu-

ents. In particular, an adjustment algorithm has been designed in which

four long-period constituents, three diurnal constituents and four semi-

diurnal constituents may be subject to adjustment within the overall adjust-

ment of SEASAT altimetric observations. Except for the long-period con-

stituents where the phase angle is considered fixed, both tidal amplitude

and phase angle are adjustable. This development is contained in the body

of the present report.

One of the building blocks of the tidal adjustment just mentioned

is the exploitation of the S.H. expansion of the constituent height. In

particular, the S.H. tidal coefficients for the diurnal constituents KI, 01,

P1 and for the semidiurnal constituents M2, S2, N2, K2 can be adopted from

[Estes, 1980], or from another reference on the subject, and can be treated

with advantage by essentially the same algorithm which serves in the compu-

tation of geoid undulations from the S.H. potential coefficients. One has

to keep in mind, however, that very serious errors would occur if the tidal

coefficients were truncated (the above reference supplies a set of 12,12

coefficients for each of the seven constituents). This property stems from

the method used in the determination of these coefficients, in which the

land areas were igtiored (the solution was not held to zero over land). Thus,

as stated on page 80 of [Estes, 1980), "completely spurious values are ob-

tained if the expansion is evaluated over land areas." This has been con-

firmed by evaluating a few constituent heights. For example, although for
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the middle of the U.S. none of the constituent heights exhibit an unreason-

able magnitude, the M2 tide for the middle of Asia (latitude 450, longitude

900) at a given time epoch (day 200 in 1978, UT= 2 hours) is computed as 7.1m.

In addition to exercising proper caution when dealing with the

tidal coefficients, one should view the individual tidal constituents in

relation to the specific orbital characteristics of the satellite used in

data acquisition. In particular, the constituents which cannot be separated

from others by the altimeter data should be adequately modeled and enforced

a priori. If left to the adjustment, such constituents would result in

aliasing tidal constituents of different frequencies. For example, if a

satellite performing altimeter measurements were sun-synchronous (this is

not the case with SEASAT), the constituents S1 and S2 would be aliased into

the zero frequency, i.e., this particular satellite, sampling theoretically

only the high solar tide, would sense them as a constant constituent. In

general, then, one is faced with the necessity of attributing a higher weight

to the parameters (here the tidal amplitude and the phase angle) of each

tidal constituent which cannot be satisfactorily resolved from the altimetry.

In the present adjustment model of SEASAT altimetry and the selected

tidal effects, the constituents to be treated with care are K1, Pis $2 and K2.

As stated in [TOPEX, 1981], the diurnal constituents K1 and P1 are aliased to

a six-month and a constant constituent, respectively; the semidiurnal con-

stituents S2 and K2 are similarly aliased to a six-month and a three-month

constituent. Since the useful life span of SEASAT amounted to only about

three months, most of these constituents cannot be properly resolved, as is

already the case vith SSa (the semiannual constituent). To further complicate
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the matters, K1 and S2, if not partially or totally constrained by appropri-

ate weighting, would be aliased into this SSa. Accordingly, it may be neces-

sary to lower the a priori sigmas associated with the eight parameters cor-

responding to the above four constituents (K, P1 9 S2 and K2, two parameters

per constituent), perhaps to or less of the sigmas associated with the

other diurnal and semidiurnal constituents.
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APPENDIX I

ANALYSIS OF LOW DEGREE VARIANCES FOR GEOID UNDULATIONS
USING SEASAT ALTIMETER DATA

The global adjustment of SEASAT altimeter data yields, at an

initial stage, the misclosures in the altimeter observation equations

cormulated in terms of spherical-harmonic (S.H.) potential coefficients

and state vector parameters (six per short orbital arc). These misclosures

are also called the constant terms of observation equations. They reflect

on the errors in the altimeter measurements (the noise of the system), in

the a priori state vector parameters, in the short-arc algorithm (a model-

ing error), and in the input S.H. potential coefficients and reference field

parameters. But, most of all, they reflect on the geoidal detail ignored by

the adjustment. Such detail depends on the truncation of the S.H. model

and can be represented by a variance, called here the "theoretical variance",

obtained as a sum of "theoretical degree variances" for geoid undulations,

where the summation extends over all the neglected degrees. Thus, in a model

truncated at degree and order (14,14) the summation extends over the degrees

15 through perhaps 1,000 (beyond this degree the contribution is negligible

for all practical purposes). The theoretical degree variancesare in turn

computed from the covariance function.

When an actual adjustment with SEASAT data was carried out, it was

observed that the root mean square (rms) of the altimetric misclosures in

the (14,14) truncated S.H. model was significantly lower than the "theoretical

sigma" (the square root of the theoretical variance). Yet, this rms contains

error contributions from the other sources of information mentioned above,
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i.e., from the ephemeris, the S.H. potential coefficients together with the

reference field parameters, and the SEASAT altimetry. The low rms value

serves as an indication of excellent quality of these sources and, in addi-

tion, as an indication of sufficient accuracy in the short-arc algorithm

applied in conjunction with the seven-minute arc criterion discussed in pre-

vious reports. This is supported by the fact that the average misclosure is

nearly zero (-O.lm). The rms value suggests that the theoretical formula

for the covariance function may be too conservative, at least insofar as the

geoid undulations for relatively low degree and order truncations are con-

cerned.

In analyzing this phenomenon the variance due to the ephemeris, in

particular, due to the radial component of the state vector parameters, has

been subtracted from the mean square of the misclosures yielding the

"empirical variance". This implies that the other variances affecting the rms

(the variances due to the input S.H. coefficients and the reference field

parameters, to the altimeter noise, and to the short-arc algorithm) have been

assumed to be negligible; otherwise the already low empirical variance would

have been even lower. The adopted procedure for computing this variance is

symbolically expressed as

2  rms2(misclos:-oes) - al2(ephemeris), (A1.1)

where "" represents "empirical". An initial step in the misclosure analysis

was undertaken in Appendix 1 of [Blaha, 1981] where the sources of information

beyond the SEASAT altimeter were identified (GEM 10 for the S.H. potential

coefficients, NSWC precise ephemeris for the state vector parameters, and
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IUGG/IAG, 1975, for the reference gravity field parameters). The S.H. model

considered therein was limited to the (14,14) subset. However, the global

rms misclosures have been since computed also in conjunction with the (8,8),

(10,10), (12,12), and (16,16) truncated models. In order to assess the

usefulness of these results for further analysis, the topic of the theoretical

variance will be addressed in more detail.

If an adjustment process is carried out in terms of an (n,n) S.H.

model, the theoretical variance for geoid undulations characterizing the

* - higher frequency content ignored by the adjustment is obtained as a summation

of theoretical degree variances from degree n+1 onward. This variance is ex-

pressed as

22
ak 2

n+l, k=n+l

where c' is the k-th degree theoretical variance for geoid undulations. The

symbol c is replaced in practice by a suitable large number such as 1,000.

According to the formulas in [Tscherning and Rapp, 1974] the theoretical k-th

degree variance for geoid undulations (ar) is computed from the theoretical

k-th degree variance for gravity anomalies (a') which is in turn obtained from

the covariance function, as follows:

a2 =R2 2C2(-1)2kk

&2 = sk+ 2A(k-l)/[(k-2)(k+B)],
k

where G is the average value of gravity (979.8 gal), R is the earth's mean

radius (6,371 km), and
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s = 0.999617

A = 425.28 mgal
2

B = 24, an integer

These formulas have been adapted from equations (10), (25A) and from Table 7

of the same reference.

Upon carrying out the operations indicated above, the theoretical

k-th degree variance for geoid undulations reads

a = 0.9996 17k+2 17,981m
2/[(k-1)(k-2)(k+24). (A1.2)

Upon summing up these variances from the chosen degree on, oneobtains

the results presented in the second column of Table 1. The "n+1" in the

first column implies the (n,n) truncated S.H. model and indicates that the

geoidal variances (both theoretical and empirical) are due to the neglected

degrees, from n+1 onward. The empirical variances are featured in the third

column. They are computed accordirj to (A1.1), where the rms misclosures are

obtained from the altimeter observation equations using the (n,n) truncated

model, and where

o (ephemeris) = 1.6m,

which is the a priori standard error in the radial component of the state vector

parameters. It is apparent from Table 1 that the empirical variance for the

low degree truncations considered is significantly lower than its theoretical

counterpart. For the truncation (8,8) the ratio of these two variances is

0.4884, for the truncation (10,10) it recedes to 0.4004 and, eventually, for

the truncation (16,16) it rises to 0.4917. Since a similar pattern can be
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assumed also for the intermediate truncations, one can conclude that for

any truncation between (8,8) and (16,16) this ratio maintains itself under

0.5. However, it would most likely climb above 0.5 already for the truncation

(17,17) due to the rising uncertainty in the S.H. potential coefficients with

the increasing degrees. In accordance with the outlined procedure, this

effect should ideally be eliminated from the empirical variance (the vari-

ance due to the input S.H. coefficients was previously assumed to be negligible).

n+1 a2 a 2
n+l,_ n+l,

8+1 57.758 28.21

10+1 4u.758 16.32

12+1 30.562 12.88

14+1 23.886 10.13

16+1 19.243 9.46

Table 1
Theoretical variances (in M 2 ) and empirical variances (in M 2

)

for geoid undulations corresponding to selocted degree and order truncations (n,n)

The marginal usefulness of the S.H. model beyond (14,14) for the

study of the empirical variances is corroborated by the statement on page 19

of [Khan, 1981]: "At this stage it is generally believed that the long wave-

length components of the gravity field are well-determined to n=14". Figure 2

of this reference, showing the approximate level of accuracy as a function of

frequency, quantifies this statement for the GEM lOB coefficients through the

degree n=22 by showing that for n=14 the "accuracy determination" is 54% while
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for n=16 it is only about 33% and it continues to diminish as n increases.

When faced with these facts one could choose to disregard the empirical

variance for n=16 and perhaps even for n=14, and use only the first three

empirical variances in Table 1. However, in considering that only the dif-

ferences between the empirical variances will eventually be used as obser-

vables in evaluating the formula (A1.2), it becomes clear that such an ap-

proach would drastically reduce the already small number of available ob-

servations.

Another avenue one could take in analyzing (A1.2) would be to use

all of the empirical variances listed in Table I and to correct them for the

effect of uncertainty in the input S.H. coefficients. However, several dif-

ficulties would complicate this approach:

a) The accuracy evaluation in Figure 2 of [Khan, 1981] concerns

the GEM lOB coefficients and not the GEM 10 coefficients

which have served in the computation of empirical variances

from SEASAT altimetry;

b) For a given degree k, the "accuracy determination", Yk%' is

not specific enough to be unequivocally applicable to the

problem at hand. In particular, it is not clear whether

the effect of the uncertainty in the k-th degree S.H. coef-

ficients is exactly (1-Yk)% of the theoretical degree

variance j2, or some other percentage; in other words, itk!

is not clear what probability statement could be associated

with the uncertainty (1-Yk)'Jk;

c) Even if (1-Yk)ak were known to be the theoretical effect of

this uncertainty one would suspect that (1-YU)t y, rather

than (1-yk)c4, should be subtracted from each uncorrected-9
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empirical degree variance; here t is some reducing factor due

to the smaller magnitudes of the empirical variances as com-

pared to their theoretical counterparts; and

d) If an adjustment model for degree variances should be repre-

sented by the formula (A1.2) or its equivalent, and if the

observables should be represented by the corrected empirical

degree variances or their combinations, one would still be

faced with the task of attributing proper weights to the ob-

servations in order to carry out a reasonably rigorous least-

squares adjustment process; for the sake of simplicity (but

without any further justification), one might wish to adopt

a unit weight matrix for this purpose, but the variance-

covariance matrices after adjustment would be difficult to

interpret in a meaningful manner.

In the approach adopted herein the empirical degree variances are

not corrected in any way, but the uncertainty in the S.H. coefficients serves

in the establishment of a weighting scheme in the least-squares adjustment

with (A1.2) as the basic model. The latter is rewritten as

C 2 = sk+2 C/[(k-1)(k-2)(k+B)] , (A1.3)

where the parameters are s, C and B. The initial values of these parameters

were presented earlier as

s = 0.999617 , (A1.4a)

C = 17,981 m2 , (A1.4b)

B = 24. (A1.4c)
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Since various approximations applied to a weighting scheme are much less

dangerous than the same kind of approximations carried into the actual ob-

servations, the difficulties encountered in the preceding paragraph are

now unimportant. By the same token, the association of the measure of un-

certainty, (1-yk)aK , with the standard error (sigma) of the quantity a'

would be acceptable if this standard error were indeed necessary. However,

if the actual observations are the empirical degree variances (a') which,

for the degrees involved, are systematically lower than the theoretical

degree variances, one can take as the a priori standard error:

sigma (k) :(l-Yk)t O , (A1.5)

where the reducing factor t is computed as the ratio between the sum of the

pertinent empirical degree variances (here between the degrees 9 and 16) and

the sum of the corresponding theoretical degree variances,

t 2 2
t 9, 16 / 9,16

The degree variances have been limited to n=9 through n=16 for

practical reasons. As stated in [Blaha, 1981], the errors introduced in

the short-arc algorithm due to the degree and order truncation below (8,8)

cannot be tolerated in SEASAT altimetry. In fact, even the truncations (8,8)

and (9,9) introduce detectable (but tolerable) errors in the satellite posi-

tions, but the set (10,10) is already completely satisfactory. It should

be noted that these considerations are valid only if the arc's duration does

not surpass 7 minutes and if the state vector parameters are given at, or

very nearly at,the mid-arc. For these reasons the empirical variances in
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Table 1 are listed starting with n+l:8+1. On the other hand, the last

value listed corresponds to n+1 16+1, due to the large uncertainty in the

S.H. coefficients discussed earlier. Clearly, with the observations avail-

able only for the degrees indicated, the results of the present analysis are

applicable only to the low-frequency range of the S.H. model, between n=9

and n=16. Since the desired combinations of degree variances are

16
-'--0 2  

E- Z a = 0a2  - 02

9,16 k=9 17,oo

16
^ A "2 a 2

9,16 X = °9,00 17,-o'
k=9

Table 1 yields

t = (28.21m 2 - 9.46m 2)/(57.758m 2- 19.243m 2) 0.4868 . (A1.6)

^2

The variance of the quantity ok is computed from (A1.5) as

var(a) = [(1-yk)t ka (AI.7)

For the weighting purposes, the empirical variances for any degrees are con-

sidered mutually independent. Since the empirical variances will be considered

* in combinations (in fact, they will be added pair-wise, each pair forming one

observation), one has

n2

var 2) = var(a) . (A1.8)
2n k=n1

The diagonal weight matrix will thus be composed of the reciprocal values in

(A1.8). Although these variances are only very approximate -- and will be

-82-



further simplified below -- their magnitudes are realistic and allow meaning-

ful estimates of the variance-covariance matrices after adjustment.

Based on the foregoing discussion, one can compute the desired

weights upon adopting the accuracy determination factor (denoted here as yk% )

from Figure 2 of [Khan, 1981]. This factor is listed, in the form (1-Yk)%,

in the third column of Table 2 for k between 9 and 16. In the cases k=9 and

k=10 the values (1-Yk)%are augmented by 7% and 3%, respectively, due to the

errors introduced in the short-arc algorithm via the truncation (8,8). Al-

though these percentages would be far too high for the present configuration

of SEASAT short arcs, a conservative approach is warranted because the pertin-

ent rms misclosures were computed before the completion of the new short-arc

preprocessor which ensures that the epoch is almost exactly at mid-arc. The

fourth column of Table 2 gives the variances of Yk according to (A1.7), with

t taken from (A1.6). Since each of the observations will consist of two

empirical variances added together, the observational variances are formed

according to (Al.8),where n2=n1+1,and are listed, for the degrees 9 and 10,

11 and 12, 13 and 14, 15 and 16, in the fifth column of Table 2. It is ap-

parent that these variances (in m) are fairly close to unity. Since only

approximate weights are needed and since several approximations in their for-

mation have already been introduced, little damage will be done if the weight

matrix is adopted as the unit matrix.

-83-



k (1Yk)% var(R) var(G^ln 2 )

9 9.689 5%+7%=12% 0.3203 0.61

10 7.311 12%+3%=15% 0.2850

11 5.680 19% 0.2760 0.63

12 4.516 27% 0.3523

13 3.661 36% 0.4116 0.87

14 3.015 46% 0.4558

15 2.517 57% 0.4878 0.97

16 2.126 67% 0.4808

Table 2

Variances (in m) of the empirical degree variances
and of their pair-wise combinations

As has already been indicated, each observation equation corresponds

to two degree variances. The constant terms in these equations are formed

as the sum of two theoretical degree variances minus the sum of two corres-

ponding empirical degree variances. The pair-wise sums of the theoretical

degree variances are apparent from the second column of Table 2. They can

also be obtained from the second column of Table 1 as the differences between

the appropriate theoretical variances; for example, o is obtained (in m2 )S9,10

from Table 2 as 9.689 + 7.311 = 17.000 or from Table 1 as 57.758 - 40.758

17.000. The corresponding combinations of the empirical degree variances are

apparent from the third column of Table 1, for example, C91 28.21 - 16.32 =9 ,10
11.89 (in m2). Table 3 lists the pertinent sums of theoretical and empirical

degree variances (columns two and three, respectively), and of their differences
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under the heading Ln 'n2 . The totals for columns two and three correspond

to the differences "top-bottom" in the same columns of Table 1.

2 *'2

n1, n2  Gnln 2  Gnl,n 2  Lnl,n 2

9,10 17.000 11.89 5.110

11,12 10.196 3.44 6.756

13,14 6.676 2.75 3.926

15,16 4.643 0.67 3.973

38.515 18.75 19.765

Table 3

Constant terms Lnl,n 2 (in M2
) in the observation equations

The matrix of observation equations in the case of individual degree

variances (see A1.3) would contain the partial derivatives of r with respect

to s, C and B:

3F/D/s = T2(k+2)/s

C aC= Cy2/C,

B= -/5(k+B)
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The observation equations for the sums of degree variances read

V I T2 a(k+2) /s] ds +r 1G2/C] dC - I 2/(k ]d+L
nln2 k=n k kzn k k=n1 

2 k+BidrL

*In order to make the numbers in the matrix of observation equation (A) corn-

parable, one may replace ds, dC and dB by ds', dC' and dB' in such a way

that

dC =(C/10) dC' ,(Al.9b)

dB =-4dB' ;(A1.9c)

the observation equations then become

n 2  n 2
V = [ . 0.01 Cu2(k+2) /s] ds' + [X 0. 1 ar2 dC'n1 ,n 2  k=ni k=ni

+ a2/ (k+B)]dB' + L nln(A1. 10)

The elements of the matrix A formed from (A1.10) are computed in a

straightforward fashion using the values in (A1.4 a-c) and a'from the second

column of Table 2 (the additions in A1.10 are pair-wise as before):

1.9438 1.7000 2.0345

1.3712 1.0196 1.1509

1.0320 0.6676 0.7132

L0.8109 0.4643 0.4708
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The observation equations are written in the matrix form as

V = AX + L

where V is the vector of (four) residuals, X is the vector of (three) para-

meters, ds', dC' and dB', and L is the vector of (four) constant terms as

presented in Table 3.

Since the weight matrix has been stipulated to be

P
P=I,

where the units are m , the least-squares solution is given by

X = -N- AT L

N = ATA,

and the variance-covariance matrix for the parameters X is
-I

CX = N

The original parameters (denoted by Y) are computed as in (A1.9 a-c). From

the general relation

Y = GX

Cy = GCx GT,

it follows for the specific linear functions, such as

Yl = c1Xl ,

Y2 = c2x2 , "'"
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that

= Icia

12 1cY2  Jc2 1 ax2  "

and

= sign (clC2 ) Pxlx 2

yielding the sigmas and the correlation coefficients (p) for the original

parameters ds, dC and dB.

As may have been anticipated already from (A1.11) showing that the

values in all three columns of A behave in a quite similar manner, the matrix

of normal equations (N) is severely ill-conditioned. In fact, both X and Cx

contain exceedingly large and unrealistic values. The matrix of correlation

coefficients, formed from N- 1 and modified so that the signs correspond to

the original parameters, reads

F1. -0.999079 -0.998350

1 symm. 1. +0.999892 
(A1.12)

Although the results of this adjustment are meaningless, the rms residual has

been computed for comparison purposes as

rMV = 0.668m2 .

This value would be larger if dB were rounded to the nearest integer.
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Clearly, all three parameters cannot be determined in any meaning-

ful way from the observations that encompass only the degrees n=9 to n=16.

One could attempt to adjust only two parameters while holding the third

fixed (the corresponding column in A would be disregarded). However, since

any two of the three columns in (A1.11) are quite comparable, ill-conditioning

is again a problem. For example, in terms of the original parameters s, C one

obtains

ds = - 0.09618 , s = 0.02730

dC = +13.880 m2 , FC = 6,225 m2 .

Both the corrections and the sigmas are quite large. The post-adjustment cor-

relation coefficient, although lower than any one in (A1.12), is still very

large, namely

PsC = -0.990871

the residual fit is necessarily worse than previously (with three parameters),

represented by

ms v  = 0.874m
2

The adjustments of the other two pairs of parameters is equally unimpressive;

in fact, the correlation coefficient for dC and dB reaches +0.998928.

Another possibility of adjusting two parameters is to restrict the

model to only one adjustable parameter (s, C or B) and to add a linear para-

meter, D. The following results are obtained for C and 0:
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dC = -2,058 m2 , C = 1,914 m2

D = -1.920 m2  GD = 0.570 m2

PCD = -0.899

rms V = 1.017 m
2

Comparable results would be obtained also if dC were replaced by ds or dB

(if the latter were rounded to the nearest integer the rms residual would

necessarily increase). However, it is not the purpose of the present

analysis to change the structure of the degree variance model. Accordingly,

this example has served merely as an illustration of a less ill-conditioned

system (on the other hand, the rms residual has increased somewhat).

It has been already noticed that due to the increased uncertainty

in the S.H. potential coefficients, the truncation (16,16) may be of only

marginal value. For this reason another series of adjustments has been car-

ried out, but without the last observation equation. All the results, in-

cluding the goodness of fit represented here by the rms residual, have suf-

fered when compared to their counterparts with four (rather than three) ob-

servation equations. The worsening is most noticeable in the correlation

coefficients. A certain amount of similarity has been observed only when

adjusting one parameter alone. The results of the one-parameter adjustment

will now be presented for the original four observation equations. With s

as the parameter, one obtains

ds = -0.035862 , s = 0.003681

rmsV = 1.417 m2

By comparison, the adjustment of B yields

dB = +14.751 0 = 1.607;

rms V = 2.163 m2
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This residual fit would be even worse if dB were rounded to 15. One notices

that the adjusted parameter Ba= B + dB would be 39 which is greatly, perhaps

unrealistically, removed from the theoretical value B =24.

The most useful in the series of adjustments carried out in the

course of this analysis is probably the adjustment of the single parameter

C. Upon obtaining the adjusted parameter Ca = C + dC, one can construct the

ratio Ca/C as a simple measure of judging the decrease ;n degree variances,

theoretical versus empirical, within the range n=9 and n=16. The results

obtained with this model are

dC =-7,849 m2 , =839 m 2

C a = 10,132 m2 , (Al.13a)

Ca/C = 0.5635 . (AI.13b)

The result (A1.13b) indicates that within the narrow band of the S.H.

frequencies treated herein the adjusted degree variances would reach only

about 56% of their theoretical value (the adjusted sigmas would accordingly

reach about 75% of their theoretical value). The rms residual is quite high

in this case, namely

rmsV = 1.966 m
2

This suggests that due to the unaccounted for errors in the S.H. potential

coefficients and perhaps to other causes, the empirical degree variances do

not behave exactly according to the model, the correcting factor Ca/C not-

withstanding. But an important conclusion that can be reached is that in

spite of these errors the empirical variances for the considered (low)
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frequencies are substantially smaller than their theoretical counterparts,

and that the ratio of these two kinds of variances is approximately 0.56.
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APPENDIX 2
EXPANSIONS IN SURFACE SPHERICAL-HARMONICS

Most of the formulas used in this appendix can be found, in one

form or another, in the standard literature and will thus be stated without

proof or reference. In the derivations, use will be made of the spherical

coordinates 0 (colatitude) and X (longitude).

A function on the sphere, f(e,x), can be expanded in surface

spheri cal-harmonics:

co

f(O,) : f n(0,) , (A2.1)
n=O

where the surface spherical-harmonic of n-th degree is

n
- ' fn(0,X) = I [anm Rnm(8O,) + bnm S nm(O,X)] , (A2.2)

m=Onmn

a's and b's being the coefficients, and R's and S's being defined as

R (6,x) = P (cose) - Pn(coso) , S (0,A) = 0,no' no n no

PR(e'x) = Pn(Cos() cos mX , m>O ,

I Snm(6,x) = Pnm(coso) sin mX , m>O ,

where P (cose) are the associated Legendre functions in the argument cosO.
nm

Equation (A2.1) can thus be rewritten in a familiar form as

n (A2.3)

[ 7 . anm R (,X) + b Sn(6,X)]

f~eA) n=O__ nm nm n
n=O m=O

n
I 7 7 (anm cos mX + bnm sin mx)Pnm(cosO)

n=o m=O
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If the spherical angle 4i separates two points with the spherical

* coordinates (6,X) and (0,W), the following "addition formula" applies:

(A2.4)n

Pn(Cos) = Pn(COSe) Pn(cosO) + 2 1 [(n- m)!/(n+m)!][Rnm(e,X) Rnm(OX)

+ Snm(0,X) Snm6Ox)] ,
nm nm

where

cos p cosO cosO + sine sinO cos(Y- A)

Next, the orthogonality relations are presented:

* j3LRno(6,X)] 2 d = 4r/(2n+) ano(A2.5a)

.'(A2.5b)

[Rnm(O,X)] 2d 2 = SSSnm(OX)]Zd= [2Tr/(2n + 1)] [(n + m)!/(n - m)!],

m>O

where dM is the solid angle element and Q represents the surface of a unit

sphere. It is important to note that the integrals of all the other possible

products not covered by (A2.5 a,b) vanish; one type of such products is

Rnm(OX) Rk9(O,X), k n and/or Z 1m, where the R's could be replaced by

the S's, and another type is Rnm(O1A) SkZ (0,A) for any n, m, k, Z.

The relation (A2.3) leads to the statement

Sk
I(O,A) -f f(O,'T) P (CoS) dQ if f : [ak Rk(-O,T) + bkk Skk(Oe-)]

SPn (CoSw) d-Q

associated, as indicated, with the (fixed) point (6,X). Upon expanding P (Cos*)
n

according to (A2.4) and utilizing the orthogonality relations, one obtains
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I(OX) no(O noa~ [4n/( 2n +1)j + 2 1 [(n-m)!/(n+m)!J

M{RnmOX aenm ~ nmLL7/I2n+l)JL(n+m)!I(n-m)!j + Snm(OX) b

This last result is written at once as

I(O,) = 4Tr/(2n+ 1)] [an Rfl,eX) + bn Snme~)

which, with the aid of (A2.2), yields the desired relation:

*ff f(-O,) P n(cosip) d-o= [47/(2n 1)]f~ox (A2.6)
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